R/functions-Spectrum.R

Defines functions consensusSpectrum .estimate_mz_resolution .estimate_mz_scattering_list .density .estimate_mz_scattering .group_mz_values meanMzInts .combineMovingWindow .findPeakValley descendPeak kNeighbors .spectrum_header validSpectrum smooth_Spectrum pickPeaks_Spectrum estimateNoise_Spectrum compare_Spectra bin_Spectra bin_Spectrum normalise_Spectrum trimMz_Spectrum getCurveWidth curveData curveStats_Spectrum quantify_Spectrum clean_Spectrum removePeaks_Spectrum

Documented in consensusSpectrum meanMzInts

removePeaks_Spectrum <- function(spectrum, t = "min", msLevel.) {
    ## Just remove peaks if spectrum's MS level matched msLevel.
    if (!missing(msLevel.)) {
        if (!(msLevel(spectrum) %in% msLevel.))
            return(spectrum)
    }
    if (isEmpty(spectrum)) return(spectrum)
    if (t == "min")
        t <- min(intensity(spectrum)[intensity(spectrum)>0])
    if (!is.numeric(t))
        stop("'t' must either be 'min' or numeric.")
    if (is.na(centroided(spectrum))) {
        warning("Centroided undefined (NA): keeping spectrum as is.")
        return(spectrum)
    } else if (centroided(spectrum)) {
        ints <- utils.removePeaks_centroided(spectrum@intensity, t)
    } else {
        ints <- utils.removePeaks(spectrum@intensity, t)
    }
    spectrum@intensity <- ints
    spectrum@tic <- sum(ints)
    return(spectrum)
}


clean_Spectrum <- function(spectrum, all, updatePeaksCount = TRUE, msLevel.) {
    ## Just clean the spectrum if its MS level matched msLevel.
    if (!missing(msLevel.)) {
        if (!(msLevel(spectrum) %in% msLevel.))
            return(spectrum)
    }
  keep <- utils.clean(spectrum@intensity, all)
  spectrum@intensity <- spectrum@intensity[keep]
  spectrum@mz <- spectrum@mz[keep]
  spectrum@peaksCount <- length(spectrum@intensity)
  return(spectrum)
}

quantify_Spectrum <- function(spectrum, method,
                              reporters, strict) {
    ## Parameters:
    ##  spectrum: object of class Spectrum
    ##  method: methods for how to quantify the peaks
    ##  reporters: object of class ReporterIons
    ##  strict: use full width of peaks or a limited range around apex
    ## Return value:
    ##  a names list of length 2 with
    ##   peakQuant: named numeric of length length(reporters)
    ##   curveStats: a length(reporters) x 7 data frame
    lrep <- length(reporters)
    peakQuant <- vector("numeric", lrep)
    names(peakQuant) <- reporterNames(reporters)
    curveStats <- matrix(NA, nrow = lrep, ncol = 7)
    for (i in 1:lrep) {
        ## Curve statistics
        dfr <- curveData(spectrum, reporters[i])
        ##  dfr:     mz int
        ##  1  114.1023   0
        ##  2  114.1063   2
        ##  3  114.1102   3
        ##  4  114.1142   4
        ##  ...
        if (strict) {
            lowerMz <- round(mz(reporters[i]) - width(reporters[i]),3)
            upperMz <- round(mz(reporters[i]) + width(reporters[i]),3)
            selMz <- (dfr$mz >= lowerMz) & (dfr$mz <= upperMz)
            dfr <- dfr[selMz,]
            dfr <- rbind(c(min(dfr$mz),0),
                         dfr,
                         c(max(dfr$mz),0))
        }
        maxInt <- max(dfr$int)
        nMaxInt <- sum(dfr$int == maxInt)
        baseLength <- nrow(dfr)
        if (strict)
            baseLength <- baseLength-2
        mzRange <- range(dfr$mz)
        precMz <- precursorMz(spectrum)
        if (length(precMz) != 1)
            precMz <- NA
        curveStats[i, ] <- c(maxInt,nMaxInt,baseLength,
                             mzRange,
                             reporters[i]@mz,precMz)
        ## Quantification
        if (method == "trapezoidation") {
            if (nrow(dfr) == 1) {
                if (!is.na(dfr$int))
                    warning(paste("Found only one mz value for precursor ",
                                  precursorMz(spectrum), " and reporter ",
                                  reporterNames(reporters[i]), ".\n",
                                  "  If your data is centroided, quantify with 'max'.",
                                  sep = ""))
            }
            ## Quantify reporter ions calculating the area
            ## under the curve by trapezoidation
            n <- nrow(dfr)
            ## - original code -
            ## x <- vector(mode = "numeric", length = n)
            ## for (j in 1:n) {
            ##     k <- (j%%n) + 1
            ##     x[j] <- dfr$mz[j] * dfr$int[k] - dfr$mz[k] * dfr$int[j]
            ## }
            ## peakQuant[i] <- abs(sum(x)/2)
            ## - updated -
            peakQuant[i] <- 0.5 * sum((dfr$mz[2:n] - dfr$mz[1:(n-1)]) *
                                      (dfr$int[2:n] + dfr$int[1:(n-1)]))
            ## area using zoo's rollmean, but seems slightly slower
            ## peakQuant[i] <- abs(sum(diff(dfr$int)*rollmean(dfr$mz,2)))
        } else if (method == "sum") {
            ## Quantify reporter ions using sum of data points of the peak
            peakQuant[i] <- sum(dfr$int)
        }  else if (method == "max") {
            ## Quantify reporter ions using max peak intensity
            peakQuant[i] <- max(dfr$int)
        }
    }
    colnames(curveStats) <- c("maxInt", "nMaxInt", "baseLength",
                              "lowerMz", "upperMz", "reporter",
                              "precursor")
    ## curveStats <- as.data.frame(curveStats)
    return(list(peakQuant = peakQuant,
                curveStats = curveStats))
}


curveStats_Spectrum <- function(spectrum,reporters) {
  curveStats <- c()
  for (i in 1:length(reporters)) {
    dfr <- curveData(spectrum,reporters[i])
    maxInt <- max(dfr$int)
    nMaxInt <- sum(dfr$int==maxInt)
    baseLength <- nrow(dfr)
    mzRange <- range(dfr$mz)
    curveStats <- rbind(curveStats,
                        c(maxInt,nMaxInt,baseLength,
                          mzRange,
                          reporters[i]@mz,precursorMz(spectrum)))
  }
  colnames(curveStats) <- c("maxInt","nMaxInt","baseLength",
                            "lowerMz","upperMz",
                            "reporter","precursor")
  return(as.data.frame(curveStats))
}

curveData <- function(spectrum, reporter) {
  ## Returns a data frame with mz and intensity
  ## values (as columns) for all the points (rows)
  ## in the reporter spectrum. The base of the
  ## curve is extracted by getCurveWidth
  ## Paramters:
  ##  spectrum: object of class Spectrum
  ##  reporter: object of class ReporterIons of length 1
  ## Return value:
  ##  a data frame
  ##           mz int
  ## 1  114.1023   0
  ## 2  114.1063   2
  ## 3  114.1102   3
  ## 4  114.1142   4
  ## ...
  if (length(reporter) != 1) {
    warning("[curveData] Only returning data for first reporter ion")
    reporter <- reporter[1]
  }
  bp <- getCurveWidth(spectrum, reporter)
  if (any(is.na(bp))) {
    return(data.frame(mz = reporter@mz, int = NA))
  } else {
    int <- intensity(spectrum)[bp$lwr[1]:bp$upr[1]]
    mz <- mz(spectrum)[bp$lwr[1]:bp$upr[1]]
    return(data.frame(cbind(mz, int)))
  }
}

getCurveWidth <- function(spectrum, reporters) {
  ## This function returns curve base indices
  ## from a spectrum object for all the reporter ions
  ## in the reporter object
  ## CHANGED IN VERSION 1.1.2
  ## NOT ANYMORE Warnings: the function returns warnings if the
  ## NOT ANYMORE  mz[indeces] range outside of the original window
  ## NOT ANYMORE  reporter in the reporters object
  ## Parameters:
  ##  spectrum: object of class Spectrum
  ##  reporters: object of class ReporterIons
  ## Return value:
  ##  list of length 2
  ##   - list$lwr of length(reporters) lower indices
  ##   - list$upr of length(reporters) upper indices
  m <- reporters@mz
  lwr <- m - reporters@width
  upr <- m + reporters@width
  mz <- spectrum@mz
  int <- spectrum@intensity
  ## if first/last int != 0, this function crashes in the while
  ## (ylwr!=0)/(yupr!=0) loops. Adding leading/ending data points to
  ## avoid this. Return values xlwr and xupr get updated accordingly
  ## [*].
  mz <- c(0, mz, 0)
  int <- c(0, int, 0)
  ## x... vectors of _indices_ of mz values
  ## y... intensity values
  xlwr <- xupr<- c()
  for (i in 1:length(m)) {
    region <- (mz > lwr[i] & mz < upr[i])
    if (sum(region, na.rm = TRUE) == 0) {
        ## warning("[getCurveData] No data for for precursor ",
        ##         spectrum@precursorMz, " reporter ", m[i])
      xlwr[i] <- xupr[i] <- NA
    } else {
      ymax <- max(int[region])
      xmax <- which((int %in% ymax) & region)
      xlwr[i] <- min(xmax) ## if several max peaks
      xupr[i] <- max(xmax) ## if several max peaks
      if (!is.na(centroided(spectrum)) & !centroided(spectrum)) {
        ylwr <- yupr <- ymax
        while (ylwr != 0) {
          xlwr[i] <- xlwr[i] - 1
          ylwr <- int[xlwr[i]]
        }
        ## if (mz[xlwr[i]] < lwr[i])
        ##   warning("Peak base for precursor ",spectrum@precursorMz,
        ##           " reporter ", m[i],": ", mz[xlwr[i]], " < ",
        ##           m[i], "-", reporters@width, sep = "")
        while (yupr != 0) {
          xupr[i] <- xupr[i] + 1
          yupr <- int[xupr[i]]
        }
        ## if (mz[xupr[i]]>upr[i])
        ##   warning("Peak base for precursor ",spectrum@precursorMz,
        ##           " reporter ",m[i],": ",mz[xlwr[i]]," > ",m[i],"+",
        ##           reporters@width,sep="")
      }
      ##
      ## --|--|--|--|--|--|--
      ##      1  2  3  4      indeces before c(0,mz,0)
      ##   1  2  3  4  5  6   indeces after  c(0,mz,0)
      ## lower index: if x_after > 1 x <- x -1 (else x <- x_after)
      ## upper index: always decrement by 1
      ##              if we have reached the last index (the 0), decrement by 2
      ##
      ## Updating xlwr, unless we reached the artificial leading 0
      if (xlwr[i] > 1)
        xlwr[i] <- xlwr[i] - 1
      ## Always updating xupr [*]
      if (xupr[i] == length(mz))
        xupr[i] <- xupr[i] - 2
      xupr[i] <- xupr[i] - 1
    }
  }
  return(list(lwr = xlwr, upr = xupr))
}

trimMz_Spectrum <- function(x, mzlim, msLevel., updatePeaksCount = TRUE) {
    ## If msLevel. not missing, perform the trimming only if the msLevel
    ## of the spectrum matches (any of) the specified msLevels.
    if (!missing(msLevel.)) {
        if (!(msLevel(x) %in% msLevel.))
            return(x)
    }
    mzmin <- min(mzlim)
    mzmax <- max(mzlim)
    sel <- which((x@mz >= mzmin) & (x@mz <= mzmax))
    if (!length(sel)) {
        msg <- paste0("No data points between ", mzmin,
                      " and ", mzmax,
                      " for spectrum with acquisition number ",
                      acquisitionNum(x),
                      ". Returning empty spectrum.")
        warning(paste(strwrap(msg), collapse = "\n"))
        x@mz <- x@intensity <- numeric()
        x@tic <- integer()
        x@peaksCount <- 0L
        return(x)
    }
    x@mz <- x@mz[sel]
    x@intensity <- x@intensity[sel]
    if (updatePeaksCount)
        x@peaksCount <- as.integer(length(x@intensity))
    return(x)
}

normalise_Spectrum <- function(object, method, value) {
  ints <- intensity(object)
  switch(method,
         max = div <- max(ints),
         sum = div <- sum(ints),
         value = div <- value)
  normInts <- ints / div
  object@intensity <- normInts
  if (validObject(object))
    return(object)
}

bin_Spectrum <- function(object, binSize = 1L,
                         breaks = seq(floor(min(mz(object))),
                                      ceiling(max(mz(object))),
                                      by = binSize),
                         fun = sum,
                         msLevel.) {
    ## If msLevel. not missing, perform the trimming only if the msLevel
    ## of the spectrum matches (any of) the specified msLevels.
    if (!missing(msLevel.)) {
        if (!(msLevel(object) %in% msLevel.))
            return(object)
    }
    bins <- .bin_values(object@intensity, object@mz, binSize = binSize,
                        breaks = breaks, fun = fun)
    object@mz <- bins$mids
    object@intensity <- bins$x
    object@tic <- sum(object@intensity)
    object@peaksCount <- length(object@mz)
    if (validObject(object))
        return(object)
}

bin_Spectra <- function(object1, object2, binSize = 1L,
                        breaks = seq(floor(min(c(mz(object1), mz(object2)))),
                                     ceiling(max(c(mz(object1), mz(object2)))),
                                     by = binSize)) {
    breaks <- .fix_breaks(breaks, range(mz(object1), mz(object2)))
    list(bin_Spectrum(object1, breaks = breaks),
         bin_Spectrum(object2, breaks = breaks))
}

#' calculate similarity between spectra (between their intensity profile)
#' @param x spectrum1 (MSnbase::Spectrum)
#' @param y spectrum2 (MSnbase::Spectrum)
#' @param fun similarity function (must take two spectra and ... as arguments)
#' @param ... further arguments passed to "fun"
#' @return double, similarity score
#' @noRd
compare_Spectra <- function(x, y,
                            fun=c("common", "cor", "dotproduct"),
                            ...) {
  if (is.character(fun)) {
    fun <- match.arg(fun)
    if (fun == "cor" || fun == "dotproduct") {
      binnedSpectra <- bin_Spectra(x, y, ...)
      inten <- lapply(binnedSpectra, intensity)
      return(do.call(fun, inten))
    } else if (fun == "common") {
      return(numberOfCommonPeaks(x, y, ...))
    }
  } else if (is.function(fun)) {
    return(fun(x, y, ...))
  }
  return(NA)
}

estimateNoise_Spectrum <- function(object,
                                   method = c("MAD", "SuperSmoother"),
                                   ignoreCentroided = FALSE, ...) {
  if (isEmpty(object)) {
    warning("Your spectrum is empty. Nothing to estimate.")
    return(matrix(NA, nrow = 0L, ncol = 2L,
                  dimnames = list(c(), c("mz", "intensity"))))
  }

  if (!ignoreCentroided && centroided(object)) {
    warning("Noise estimation is only supported for profile spectra.")
    return(matrix(NA, nrow = 0L, ncol = 2L,
                  dimnames = list(c(), c("mz", "intensity"))))
  }

  noise <- MALDIquant:::.estimateNoise(mz(object), intensity(object),
                                       method = match.arg(method), ...)
  cbind(mz=mz(object), intensity=noise)
}

pickPeaks_Spectrum <- function(object, halfWindowSize = 2L,
                               method = c("MAD", "SuperSmoother"),
                               SNR = 0L, ignoreCentroided = FALSE,
                               refineMz = c("none", "kNeighbors",
                                            "kNeighbours",
                                            "descendPeak"),
                               msLevel., ...) {
    if (!missing(msLevel.)) {
        if (!(msLevel(object) %in% msLevel.))
            return(object)
    }
    if (isEmpty(object)) {
        warning("Your spectrum is empty. Nothing to pick.")
        return(object)
    }

    if (!ignoreCentroided && centroided(object, na.fail = TRUE))
        return(object)

    refineMz <- match.arg(refineMz)
    ## estimate noise
    ## Hack to support passing arguments to both noise estimation methods and
    ## m/z refinement methods. CAVE: partial matching does not work!
    dots <- list(...)
    dots <- dots[!names(dots) %in% c("k", "signalPercentage", "stopAtTwo")]
    noise <- do.call("estimateNoise_Spectrum",
                     c(list(object = object, method = method,
                            ignoreCentroided = ignoreCentroided),
                       dots))[, 2L]

    ## find local maxima
    isLocalMaxima <- MALDIquant:::.localMaxima(intensity(object),
                                               halfWindowSize = halfWindowSize)

    ## include only local maxima which are above the noise
    isAboveNoise <- object@intensity > (SNR * noise)

    peakIdx <- which(isAboveNoise & isLocalMaxima)

    if (refineMz == "none") {
        object@mz <- object@mz[peakIdx]
        object@intensity <- object@intensity[peakIdx]
    } else {
        ## Call the method passing all additional arguments.
        pks <- do.call(refineMz, args = c(list(mz = object@mz,
                                               intensity = object@intensity,
                                               peakIdx = peakIdx),
                                               list(...)))
        object@mz <- pks[, 1]
        object@intensity <- pks[, 2]
    }
    object@peaksCount <- length(peakIdx)
    object@tic <- sum(intensity(object))
    object@centroided <- TRUE

    if (validObject(object)) {
        return(object)
    }
}

smooth_Spectrum <- function(object,
                            method = c("SavitzkyGolay", "MovingAverage"),
                            halfWindowSize = 2L, msLevel., ...) {
    if (!missing(msLevel.)) {
        if (!(msLevel(object) %in% msLevel.))
            return(object)
    }
    if (!peaksCount(object)) {
        warning("Your spectrum is empty. Nothing to change.")
        return(object)
    }
    method <- match.arg(method)
    switch(method,
           "SavitzkyGolay" = {
               fun <- MALDIquant:::.savitzkyGolay
           },
           "MovingAverage" = {
               fun <- MALDIquant:::.movingAverage
           })
    object@intensity <- fun(object@intensity,
                            halfWindowSize = halfWindowSize,
                            ...)
    isBelowZero <- object@intensity < 0
    if (any(isBelowZero)) {
        warning("Negative intensities generated. Replaced by zeros.")
        object@intensity[isBelowZero] <- 0
    }
    object@tic <- sum(intensity(object))
    if (validObject(object))
        return(object)
}


## A fast validity check that desn't check the validity of all
## inherited/inheriting objects. See
## https://github.com/lgatto/MSnbase/issues/184#issuecomment-274058543
## for details and background
## Some small performance improvements:
## o direct access of slots.
## o is.unsorted instead of any(diff(mz(object)) < 0)
validSpectrum <- function(object) {
    msg <- validMsg(NULL, NULL)
    if (any(is.na(object@intensity)))
        msg <- validMsg(msg, "'NA' intensities found.")
    if (any(is.na(object@mz)))
        msg <- validMsg(msg, "'NA' M/Z found.")
    if (any(object@intensity < 0))
        msg <- validMsg(msg, "Negative intensities found.")
    if (any(object@mz < 0))
        msg <- validMsg(msg, "Negative M/Z found.")
    if (length(object@mz) != length(object@intensity))
        msg <- validMsg(msg, "Unequal number of MZ and intensity values.")
    if (length(object@mz) != peaksCount(object))
        msg <- validMsg(msg, "Peaks count does not match up with number of MZ values.")
    if (is.unsorted(object@mz))
        msg <- validMsg(msg, "MZ values are out of order.")
    if (is.null(msg)) TRUE
    else stop(msg)
}

#' @description `.spectrum_header` extracts the header information from a
#'     `Spectrum` object and returns it as a named numeric vector.
#'
#' @note We can not get the following information from Spectrum
#' objects:
#' - ionisationEnergy
#' - mergedResultScanNum
#' - mergedResultStartScanNum
#' - mergedResultEndScanNum
#' - isolationWindowTargetMZ
#' - isolationWindowLowerOffset
#' - isolationWindowUpperOffset
#'
#' @param x `Spectrum` object.
#'
#' @return A `data.frame` with the following columns:
#' - acquisitionNum
#' - msLevel
#' - polarity
#' - peaksCount
#' - totIonCurrent
#' - retentionTime
#' - basePeakMZ
#' - collisionEnergy
#' - ionisationEnergy
#' - lowMZ
#' - highMZ
#' - precursorScanNum
#' - precursorMZ
#' - precurorCharge
#' - precursorIntensity
#' - mergedScan
#' - mergedResultScanNum
#' - mergedResultStartScanNum
#' - mergedResultEndScanNum
#' - injectionTime
#' - filterString
#' - spectrumId
#' - centroided
#' - ionMobilityDriftTime
#' - seqNum
#' - isolationWindowTargetMZ
#' - isolationWindowLowerOffset
#' - isolationWindowUpperOffset
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.spectrum_header <- function(x) {
    res <- data.frame(acquisitionNum = acquisitionNum(x),
                      msLevel = msLevel(x),
                      polarity = polarity(x),
                      peaksCount = peaksCount(x),
                      totIonCurrent = tic(x),
                      retentionTime = rtime(x),
                      basePeakMZ = mz(x)[which.max(intensity(x))][1],
                      basePeakIntensity = max(intensity(x)),
                      collisionEnergy = NA_real_,
                      ionisationEnergy = 0,      # How to get that?
                      lowMZ = min(mz(x)),
                      highMZ = max(mz(x)),
                      precursorScanNum = NA_integer_,
                      precursorMZ = NA_real_,
                      precursorCharge = NA_integer_,
                      precursorIntensity = NA_real_,
                      mergedScan = NA_integer_,
                      mergedResultScanNum = NA_integer_,
                      mergedResultStartScanNum = NA_integer_,
                      mergedResultEndScanNum = NA_integer_,
                      injectionTime = NA_real_,            # Don't have that
                      filterString = NA_character_,
                      spectrumId = paste0("scan=", acquisitionNum(x)),
                      centroided = centroided(x),
                      ionMobilityDriftTime = NA_real_,
                      isolationWindowTargetMZ = NA_real_,
                      isolationWindowLowerOffset = NA_real_,
                      isolationWindowUpperOffset = NA_real_,
                      scanWindowLowerLimit = NA_real_,
                      scanWindowUpperLimit = NA_real_,
                      stringsAsFactors = FALSE
                      )
    if (msLevel(x) > 1) {
        res$collisionEnergy <- collisionEnergy(x)
        res$precursorScanNum <- precScanNum(x)
        res$precursorMZ <- precursorMz(x)
        res$precursorCharge <- precursorCharge(x)
        res$precursorIntensity <- precursorIntensity(x)
        res$mergedScan <- x@merged
    }
    res
}

#' @description `kNeighbors` refines the m/z value of the identified peak
#'     (centroid) based on a user defined number (`2 * k`) of neighboring
#'     signals. The resulting m/z value is the intensity weighted average of
#'     the peak's m/z value and the m/z values of the `2 * k` neighboring
#'     signals.
#'
#' @param mz `numeric` with the m/z values of a spectrum.
#'
#' @param intensity `numeric` with the intensities within the spectrum.
#'
#' @param peakIdx `integer` with the indices of the identified mass peaks.
#'
#' @param k `integer(1)`: number of values left and right of the
#'     peak that should be considered in the weighted mean calculation.
#'
#' @param ... Currently not used.
#'
#' @return A `matrix` with columns `"mz"` and `"intensity"`
#'     with the m/z and intensity values of the refined peaks.
#'
#' @author Johannes Rainer
#'
#' @noRd
#'
#' @md
#'
#' @examples
#' ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 9, 12, 14, 13, 8, 3)
#' mzs <- 1:length(ints)
#'
#' plot(mzs, ints, type = "h")
#'
#' peak_idx <- c(3, 8, 16)
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#'
#' ## Use the weighted average considering the adjacent mz
#' mzs_1 <- kNeighbors(mz = mzs, peakIdx = peak_idx, intensity = ints, k = 1)
#' points(mzs_1[, 1], mzs_1[, 2], col = "red", type = "h")
#'
#' mzs_2 <- kNeighbors(mz = mzs, peakIdx = peak_idx, intensity = ints, k = 2)
#' points(mzs_2[, 1], mzs_2[, 2], col = "red", type = "h")
#'
#' ## Second example
#' ints <- c(5, 3, 2, 3, 1, 2, 4, 6, 8, 11, 4, 7, 5, 2, 1, 0, 1, 0, 1, 1, 1, 0)
#' mzs <- 1:length(ints)
#'
#' plot(mzs, ints, type = "h")
#' peak_idx <- 10
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#'
#' mzs_2 <- kNeighbors(mz = mzs, peakIdx = peak_idx, intensity = ints, k = 2)
#' points(mzs_2[, 1], mzs_2[, 2], col = "red", type = "h")
#'
#' ## Include "missing" measurements.
#' ints <- ints[-9]
#' mzs <- mzs[-9]
#'
#' plot(mzs, ints, type = "h")
#' peak_idx <- 9
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#'
#' mzs_2 <- kNeighbors(mz = mzs, peakIdx = peak_idx, intensity = ints, k = 2)
#' abline(v = mzs_2[, 1], col = "red")
kNeighbors <- function(mz, intensity, peakIdx = NULL, k = 2, ...) {
    if (length(mz) != length(intensity))
        stop("lengths of 'mz' and 'intensity' have to match")
    if (length(peakIdx) == 0)
        return(cbind(mz = mz[peakIdx], intensity = intensity[peakIdx]))
    len <- length(mz)
    do.call(rbind, lapply(peakIdx, function(z) {
        idxs <- windowIndices(z, k, len)
        c(mz = weighted.mean(x = mz[idxs], w = intensity[idxs], na.rm = TRUE),
          intensity = intensity[z])
    }))
}

kNeighbours <- kNeighbors

#' @description `descendPeak` refines the m/z value of a peak (centroid)
#'     considering neighboring data points that belong most likely to the same
#'     mass peak. The peak region (i.e. the data points to include) are defined
#'     by, starting from the peak position, descending the peak on both sides
#'     until the measured signal increases again. Within that region all
#'     measurements with an intensity of at least `signalPercentage` of the
#'     peak's intensity are used to calculate the refined m/z using a intensity
#'     weighted average.
#'
#' @inheritParams kNeighbors
#'
#' @param signalPercentage `numeric(1)` with the percentage of the peak
#'     intensity above which neighboring m/z values are included in the weighted
#'     mean calculation.
#'
#' @param stopAtTwo `logical(1)` indicating whether the peak descending
#'     should only stop if two consecutive measurements with increasing (or
#'     same) signal are encountered or already at the first (default).
#'
#' @param descendIfEdge `logical(1)` If a local maximum is found at the edge of
#'     a spectrum, should the descend still continue on the other side of the
#'     peak (centroid)? Defaults to FALSE. 
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
#'
#' @examples
#' ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 9, 12, 14, 13, 8, 3)
#' mzs <- 1:length(ints)
#'
#' plot(mzs, ints, type = "h")
#'
#' peak_idx <- c(3, 8, 16)
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#'
#' ## Use the weighted average considering the adjacent mz
#' mzs_1 <- descendPeak(mz = mzs, peakIdx = peak_idx, intensity = ints)
#' points(mzs_1[, 1], mzs_1[, 2], col = "red", type = "h")
#'
#' ## Values considered for the first peak:
#' pk_1 <- c(1, 2, 3, 4, 5)
#' mzs_1[1, 1] == weighted.mean(mzs[pk_1], ints[pk_1])
#'
#' ## Second example
#' ints <- c(5, 3, 2, 3, 1, 2, 4, 6, 8, 11, 4, 7, 5, 2, 1, 0, 1, 4, 1, 1, 1, 0)
#' mzs <- 1:length(ints)
#'
#' plot(mzs, ints, type = "h")
#' peak_idx <- 10
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#'
#' mzs_2 <- descendPeak(mz = mzs, peakIdx = peak_idx, intensity = ints,
#'     signalPercentage = 0)
#' points(mzs_2[, 1], mzs_2[, 2], col = "red", type = "h")
#'
#' ## Points considered:
#' pk_idx <- c(5, 6, 7, 8, 9, 10, 11)
#' mzs_2[1, 1] == weighted.mean(mzs[pk_idx], ints[pk_idx])
#'
#' ## Stopping at two increasing values
#' mzs_2 <- descendPeak(mz = mzs, intensity = ints, peakIdx = peak_idx,
#'     signalPercentage = 0, stopAtTwo = TRUE)
#' points(mzs_2[, 1], mzs_2[, 2], col = "blue", type = "h")
#' pk_idx <- c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
#' mzs_2[1, 1] == weighted.mean(mzs[pk_idx], ints[pk_idx])
#'
#'
#' ## Include "missing" measurements.
#' ints <- ints[-9]
#' mzs <- mzs[-9]
#'
#' plot(mzs, ints, type = "h")
#' peak_idx <- 9
#'
#' points(mzs[peak_idx], ints[peak_idx], pch = 16)
#' mzs_2 <- descendPeak(mz = mzs, peakIdx = peak_idx, intensity = ints,
#'     signalPercentage = 0)
#' points(mzs_2[, 1], mzs_2[, 2], col = "red", type = "h")
descendPeak <- function(mz, intensity, peakIdx = NULL, signalPercentage = 33,
                        stopAtTwo = FALSE, descendIfEdge = FALSE, ...) {
  if (length(mz) != length(intensity))
    stop("lengths of 'mz' and 'intensity' have to match")
  if (length(peakIdx) == 0)
    return(cbind(mz = mz[peakIdx], intensity = intensity[peakIdx]))
  len <- length(mz)
  signalPercentage = signalPercentage / 100
  max_k <- 30                        # max peak region to consider
  ## Define the index of values to include.
  do.call(rbind, lapply(peakIdx, function(z) {
    ## Define the region of interest in which we will search for signal
    ## larger than the threshold. We restrict to a max region +- max_k
    ## data points large.
    ## 1) Ensure that the region we consider is symmetric around the
    ##    peak - important at the edges.
    from_to <- c(max(1, z - max_k), min(len, z + max_k))
    half_width <- min(abs(from_to - z))
    ## Descend to the right
    ## Fix for issue #583: if `descendIfEdge` is TRUE, take the full width,
    ## else take the half width (Defaults to FALSE to keep current behaviour)
    to_idx <- ifelse(descendIfEdge, from_to[2], z + half_width)  
    
    ## 2) Restrict the region to the area with monotonically decreasing
    ##    signal (from the apex).
    tmp_idx <- .findPeakValley(z:to_idx, intensity, stopAtTwo)
    if (!is.na(tmp_idx))
      to_idx <- tmp_idx
    ## Descend to left
    from_idx <- ifelse(descendIfEdge, from_to[1], z - half_width) 
    tmp_idx <- .findPeakValley(z:from_idx, intensity, stopAtTwo)
    if (!is.na(tmp_idx))
      from_idx <- tmp_idx
    ## Define the peak threshold
    peak_thr <- intensity[z] * signalPercentage
    ## Define which values in the region are above the threshold.
    roi <- from_idx:to_idx
    idxs <- roi[which(intensity[roi] > peak_thr)]
    c(mz = weighted.mean(x = mz[idxs], w = intensity[idxs], na.rm = TRUE),
      intensity = intensity[z])
  }))
}

.findPeakValley <- function(idx, intensity, stopAtTwo = FALSE) {
    sign_change <- diff(intensity[idx]) >= 0
    if (stopAtTwo)
        sign_change <- sign_change & c(sign_change[-1], TRUE)
    if (any(sign_change))
        idx[base::which.max(sign_change)]
    else NA
}

#' Given a list of spectra, combine neighboring spectra and return a list of
#' such combined spectra. Spectra are combined using a moving window approach
#' with each combined spectrum containing the mz and intensity
#' values of all included spectra. All other spectrum data (e.g. retention time)
#' are kept.
#'
#' @param x `list` of `Spectrum` objects, such as returned by a call to
#'     `spectra`.
#'
#' @param halfWindowSize `integer(1)` defining the half window size of the
#'     moving window.
#'
#' @return `list` of `Spectrum` objects, same length than `x`, but each
#'     `Spectrum` containing the intensity and m/z values from multiple
#'     neighboring spectra.
#'
#' @author Johannes Rainer
#'
#' @noRd
.combineMovingWindow <- function(x, halfWindowSize = 1L) {
    ## loop through spectra and combine data from xx spectra.
    len_x <- length(x)
    res <- vector("list", len_x)
    ## While it does not seem intuitive, the two lapply calls in the loop are
    ## faster than a single lapply that uses as.data.frame. Also it requires
    ## much less memory as it does no copying.
    for (i in seq_along(x)) {
        cur_sp <- x[[i]]
        idxs <- windowIndices(i, halfWindowSize, len_x)
        mz <- unlist(lapply(x[idxs], mz), use.names = FALSE)
        ordr <- order(mz)
        cur_sp@mz <- mz[ordr]
        cur_sp@intensity <- unlist(lapply(x[idxs], intensity),
                                   use.names = FALSE)[ordr]
        res[[i]] <- cur_sp
    }
    res
}

#' @title Combine a list of spectra to a single spectrum
#'
#' @description
#'
#' Combine peaks from several spectra into a single spectrum. Intensity and
#' m/z values from the input spectra are aggregated into a single peak if
#' the difference between their m/z values is smaller than `mzd` or smaller than
#' `ppm` of their m/z. While `mzd` can be used to group mass peaks with a single
#' fixed value, `ppm` allows a m/z dependent mass peak grouping. Intensity
#' values of grouped mass peaks are aggregated with the `intensityFun`, m/z
#' values by the mean, or intensity weighted mean if `weighted = TRUE`.
#'
#' @note
#'
#' This allows e.g. to combine profile-mode spectra of consecutive scans into
#' the values for the *main* spectrum. This can improve centroiding of
#' profile-mode data by increasing the signal-to-noise ratio and is used in the
#' [combineSpectraMovingWindow()] function.
#'
#' @details
#'
#' For general merging of spectra, the `mzd` and/or `ppm` should be manually
#' specified based on the precision of the MS instrument. Peaks from spectra
#' with a difference in their m/z being smaller than `mzd` or smaller than
#' `ppm` of their m/z are grouped into the same final peak.
#'
#'
#' Some details for the combination of consecutive spectra of an LCMS run:
#'
#' The m/z values of the same ion in consecutive scans (spectra) of a LCMS run
#' will not be identical. Assuming that this random variation is much smaller
#' than the resolution of the MS instrument (i.e. the difference between
#' m/z values within each single spectrum), m/z value groups are defined
#' across the spectra and those containing m/z values of the `main` spectrum
#' are retained. The maximum allowed difference between m/z values for the
#' same ion is estimated as in [estimateMzScattering()]. Alternatively it is
#' possible to define this maximal m/z difference with the `mzd` parameter.
#' All m/z values with a difference smaller than this value are combined to
#' a m/z group.
#' Intensities and m/z values falling within each of these m/z groups are
#' aggregated using the `intensity_fun` and `mz_fun`, respectively. It is
#' highly likely that all QTOF profile data is collected with a timing circuit
#' that collects data points with regular intervals of time that are then later
#' converted into m/z values based on the relationship `t = k * sqrt(m/z)`. The
#' m/z scale is thus non-linear and the m/z scattering (which is in fact caused
#' by small variations in the time circuit) will thus be different in the lower
#' and upper m/z scale. m/z-intensity pairs from consecutive scans to be
#' combined are therefore defined by default on the square root of the m/z
#' values. With `timeDomain = FALSE`, the actual m/z values will be used.
#'
#' @param x `list` of `Spectrum` objects.
#'
#' @param main `integer(1)` defining the *main* spectrum, i.e. the spectrum
#'     which m/z and intensity values get replaced and is returned. By default
#'     the *first* spectrum in `x` is used.
#'
#' @param weighted `logical(1)` whether m/z values per m/z group should be
#'     aggregated with an intensity-weighted mean. The default is to report
#'     the mean m/z.
#'
#' @param intensityFun `function` to aggregate the intensity values per m/z
#'     group. Should be a function or the name of a function. The function is
#'     expected to return a `numeric(1)`.
#'
#' @param mzd `numeric(1)` defining the maximal m/z difference below which
#'     mass peaks are considered to represent the same ion/mass peak.
#'     Intensity values for such grouped mass peaks are aggregated. If not
#'     specified this value is estimated from the distribution of differences
#'     of m/z values from the provided spectra (see details).
#'
#' @param ppm `numeric(1)` allowing to perform a m/z dependent grouping of mass
#'     peaks. See details for more information.
#'
#' @param timeDomain `logical(1)` whether definition of the m/z values to be
#'     combined into one m/z is performed on m/z values
#'     (`timeDomain = FALSE`) or on `sqrt(mz)` (`timeDomain = TRUE`).
#'     Profile data from TOF MS instruments should be aggregated based
#'     on the time domain (see details). Note that a pre-defined `mzd` should
#'     also be estimated on the square root of m/z values if
#'     `timeDomain = TRUE`.
#'
#' @param unionPeaks `logical(1)` whether the union of all peaks (peak groups)
#'     from all spectra are reported or only peak groups that contain peaks
#'     that are present in the *main* spectrum (defined by `main`). The default
#'     is to report the union of peaks from all spectra.
#'
#' @param ... additional parameters that are passed to `intensityFun`.
#'
#' @return
#'
#' `Spectrum` with m/z and intensity values representing the aggregated values
#' across the provided spectra. The returned spectrum contains the union of
#' all peaks from all spectra (if `unionPeaks = TRUE`), or the same number of
#' m/z and intensity pairs than the spectrum with index `main` in `x` (if
#' `unionPeaks = FALSE`. All other spectrum data (such as retention time etc)
#' is taken from the *main* spectrum.
#'
#' @author Johannes Rainer, Sigurdur Smarason
#'
#' @family spectra combination functions
#'
#' @seealso
#'
#' [estimateMzScattering()] for a function to estimate m/z scattering
#' in consecutive scans.
#'
#' [estimateMzResolution()] for a function estimating the m/z resolution of
#' a spectrum.
#'
#' [combineSpectraMovingWindow()] for the function to combine consecutive
#' spectra of an `MSnExp` object using a moving window approach.
#'
#' @md
#'
#' @examples
#'
#' library(MSnbase)
#' ## Create 3 example profile-mode spectra with a resolution of 0.1 and small
#' ## random variations on these m/z values on consecutive scans.
#' set.seed(123)
#' mzs <- seq(1, 20, 0.1)
#' ints1 <- abs(rnorm(length(mzs), 10))
#' ints1[11:20] <- c(15, 30, 90, 200, 500, 300, 100, 70, 40, 20) # add peak
#' ints2 <- abs(rnorm(length(mzs), 10))
#' ints2[11:20] <- c(15, 30, 60, 120, 300, 200, 90, 60, 30, 23)
#' ints3 <- abs(rnorm(length(mzs), 10))
#' ints3[11:20] <- c(13, 20, 50, 100, 200, 100, 80, 40, 30, 20)
#'
#' ## Create the spectra.
#' sp1 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),
#'     intensity = ints1)
#' sp2 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),
#'     intensity = ints2)
#' sp3 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.009),
#'     intensity = ints3)
#'
#' ## Combine the spectra
#' sp_agg <- meanMzInts(list(sp1, sp2, sp3))
#'
#' ## Plot the spectra before and after combining
#' par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
#' plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")
#' points(mz(sp2), intensity(sp2), type = "h", col = "green")
#' points(mz(sp3), intensity(sp3), type = "h", col = "blue")
#' plot(mz(sp_agg), intensity(sp_agg), xlim = range(mzs[5:25]), type = "h",
#'     col = "black")
meanMzInts <- function(x, ..., intensityFun = base::mean, weighted = FALSE,
                       main = 1L, mzd, ppm = 0, timeDomain = FALSE,
                       unionPeaks = TRUE) {
    if (length(x) == 1)
        return(x[[1]])
    if (length(unique(unlist(lapply(x, function(z) z@msLevel)))) != 1)
        stop("Can only combine spectra with the same MS level")
    if (main > length(x) || main < 1)
        stop("'main' should be an integer between 1 and ", length(x))
    mzs <- lapply(x, function(z) z@mz)
    mzs_lens <- base::lengths(mzs)
    mzs <- unlist(mzs, use.names = FALSE)
    mz_order <- base::order(mzs)
    mzs <- mzs[mz_order]
    if (timeDomain)
        mz_groups <- .group_mz_values(sqrt(mzs), mzd = mzd)
    else
        mz_groups <- .group_mz_values(mzs, mzd = mzd, ppm = ppm)
    ints <- unlist(base::lapply(x, function(z) z@intensity),
                   use.names = FALSE)[mz_order]
    new_sp <- x[[main]]
    if (!unionPeaks) {
        ## Want to keep only those groups with a m/z from the main spectrum.
        ## vectorized version from @sgibb
        is_in_main <- rep.int(seq_along(mzs_lens), mzs_lens)[mz_order] == main
        keep <- mz_groups %in% mz_groups[is_in_main]
        ## Keep only values for which a m/z in main is present.
        mz_groups <- mz_groups[keep]
        mzs <- mzs[keep]
        ints <- ints[keep]
    }
    ## Support also weighted.mean:
    if (weighted) {
        intsp <- split(ints, mz_groups)
        new_sp@mz <- base::mapply(split(mzs, mz_groups), intsp,
                                  FUN = function(mz_vals, w)
                                      stats::weighted.mean(mz_vals, w + 1,
                                                           na.rm = TRUE),
                                  USE.NAMES = FALSE, SIMPLIFY = TRUE)
        new_sp@intensity <- base::vapply(intsp, FUN = intensityFun,
                                         FUN.VALUE = numeric(1),
                                         USE.NAMES = FALSE, ...)
    } else {
        new_sp@mz <- base::vapply(split(mzs, mz_groups), FUN = base::mean,
                                  FUN.VALUE = numeric(1), USE.NAMES = FALSE,
                                  ...)
        new_sp@intensity <- base::vapply(split(ints, mz_groups),
                                         FUN = intensityFun,
                                         FUN.VALUE = numeric(1),
                                         USE.NAMES = FALSE, ...)
    }
    if (is.unsorted(new_sp@mz))
        stop("m/z values of combined spectrum are not ordered")
    new_sp@peaksCount <- length(new_sp@mz)
    new_sp
}

#' Group a sorted `numeric` of m/z values from consecutive scans by ion assuming
#' that the variation between m/z values for the same ion in consecutive scan
#' is much lower than the difference between m/z values within one scan.
#'
#' @param x `numeric` with ordered and combined m/z values from consecutive
#'     scans.
#'
#' @param mzd `numeric(1)` with the m/z difference below which m/z values are
#'     grouped together. If not provided the `.estimate_mz_scattering` function
#'     is used to estimate it.
#'
#' @param ppm `numeric(1)` defining an optional ppm. `mzd` will be increased
#'     by the ppm of the m/z to allow m/z dependent peak groups.
#'
#' @return `integer` of same length than `x` grouping m/z values.
#'
#' @noRd
.group_mz_values <- function(x, mzd, ppm = 0) {
    mzdiff <- diff(x)
    if (missing(mzd))
        mzd <- .estimate_mz_scattering(mzdiff, TRUE)
    ## Create a vector grouping values with difference in mz values being
    ## smaller than mzd
    ## nvals <- diff(c(0, which(!(mzdiff < mzd)), length(x)))
    ## rep(1:length(nvals), nvals)
    if (ppm > 0)
        cumsum(c(0L, mzdiff >= (mzd + x[-length(x)] * ppm / 1e6))) + 1L
    else
        cumsum(c(0L, mzdiff >= mzd)) + 1L
}

#' Estimate the extent of random scattering of m/z values of the same ion in
#' consecutive scans. This bases on the assumption that the random scattering
#' of m/z values is much smaller than the m/z resolution of the MS instrument.
#'
#' Assumes the data is in profile mode.
#'
#' @param x Either values or differences between values.
#'
#' @param is_diff `logical(1)` indicating whether `x` are already differences.
#'
#' @author Johannes Rainer
#'
#' @noRd
.estimate_mz_scattering <- function(x, is_diff = FALSE) {
    if (!is_diff)
        x <- diff(x)
    dens <- .density(x)
    ## Find all turning points, i.e. where density is increasing
    idxs <- which(diff(sign(diff(dens$y))) == 2) + 1
    if (length(idxs) == 0)
        stop("Error estimating random scattering of m/z values in consecutive",
             " scans: could not discriminate between expected m/z difference ",
             " and random noise.")
    dens$x[idxs[1]]
}

.density <- function(x) stats::density(x, n = max(c(512L, length(x) / 2L)))

#' @param x `list` of `Spectrum` objects.
#'
#' @noRd
.estimate_mz_scattering_list <- function(x, halfWindowSize = 1L,
                                         timeDomain = TRUE) {
    len_x <- length(x)
    mzs <- vector("list", len_x)
    for (i in seq_along(x)) {
        mzs[[i]] <- .estimate_mz_scattering(
            sort(unlist(lapply(x[windowIndices(i, halfWindowSize, len_x)],
                               function(z) {
                                   if (timeDomain) sqrt(z@mz)
                                   else z@mz
                               }))))
    }
    mzs
}

#' Estimate the m/z resolution (i.e. the average difference between m/z values)
#' of a Spectrum.
#'
#' @param x `numeric` with the (sorted) m/z values of one spectrum.
#'
#' @return `numeric(1)` with the m/z resplution.
#'
#' @author Johannes Rainer
#'
#' @noRd
.estimate_mz_resolution <- function(x) {
    d <- .density(diff(x))
    d$x[which.max(d$y)]
    ## x <- diff(x)
    ## h <- hist(x, breaks = seq((min(x)), (max(x)),
    ##                           length.out = length(x)/4),
    ##           plot = FALSE)
    ## h$mids[which.max(h$counts)]
}

#' @title Combine spectra to a consensus spectrum
#'
#' @description
#'
#' `consensusSpectrum` takes a list of spectra and combines them to a
#' consensus spectrum containing mass peaks that are present in a user
#' definable proportion of spectra.
#'
#' @details
#'
#' Peaks from spectra with a difference of their m/z being smaller than `mzd`
#' are grouped into the same final mass peak with their intensities being
#' aggregated with `intensityFun`. Alternatively (or in addition) it is
#' possible to perform an m/z dependent grouping of mass peaks with parameter
#' `ppm`: mass peaks from different spectra with a difference in their m/z
#' smaller than `ppm` of their m/z are grouped into the same final peak.
#'
#' The m/z of the final mass peaks is calculated with `mzFun`. By setting
#' `weighted = TRUE` the parameter `mzFun` is ignored and an intensity-weighted
#' mean of the m/z values from the individual mass peaks is returned as the
#' peak's m/z.
#'
#' @param x `list` of [Spectrum-class] objects (either [Spectrum1-class] or
#'     [Spectrum2-class]).
#'
#' @param mzd `numeric(1)` defining the maximal m/z difference below which
#'     mass peaks are grouped in to the same final mass peak (see details for
#'     more information). Defaults to `0`; see [meanMzInts()] for estimating
#'     this value from the distribution of differences of m/z values from the
#'     spectra. See also parameter `ppm` below for the definition of an m/z
#'     dependent peak grouping.
#'
#' @param minProp `numeric(1)` defining the minimal proportion of spectra in
#'     which a mass peak has to be present in order to include it in the
#'     final consensus spectrum. Should be a number between 0 and 1 (present in
#'     all spectra).
#'
#' @param intensityFun `function` (or name of a function) to be used to define
#'     the intensity of the aggregated peak. By default the median signal for
#'     a mass peak is reported.
#'
#' @param mzFun `function` (or name of a function) to be used to define the
#'     intensity of the aggregated peak. By default the median m/z is reported.
#'     Note that setting `weighted = TRUE` overrides this parameter.
#'
#' @param ppm `numeric(1)` allowing to perform a m/z dependent grouping of mass
#'     peaks. See details for more information.
#'
#' @param weighted `logical(1)` whether the m/z of the aggregated peak
#'     represents the intensity-weighted average of the m/z values of all peaks
#'     of the peak group. If `FALSE` (the default), the m/z of the peak is
#'     calculated with `mzFun`.
#'
#' @param ... additional arguments to be passed to `intensityFun`.
#'
#' @md
#'
#' @author Johannes Rainer
#'
#' @family spectra combination functions
#'
#' @examples
#' library(MSnbase)
#' ## Create 3 example spectra.
#' sp1 <- new("Spectrum2", rt = 1, precursorMz = 1.41,
#'     mz = c(1.2, 1.5, 1.8, 3.6, 4.9, 5.0, 7.8, 8.4),
#'     intensity = c(10, 3, 140, 14, 299, 12, 49, 20))
#' sp2 <- new("Spectrum2", rt = 1.1, precursorMz = 1.4102,
#'     mz = c(1.4, 1.81, 2.4, 4.91, 6.0, 7.2, 9),
#'     intensity = c(3, 184, 8, 156, 12, 23, 10))
#' sp3 <- new("Spectrum2", rt = 1.2, precursorMz = 1.409,
#'     mz = c(1, 1.82, 2.2, 3, 7.0, 8),
#'     intensity = c(8, 210, 7, 101, 17, 8))
#' spl <- MSpectra(sp1, sp2, sp3)
#'
#' ## Plot the spectra, each in a different color
#' par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
#' plot(mz(sp1), intensity(sp1), type = "h", col = "#ff000080", lwd = 2,
#'     xlab = "m/z", ylab = "intensity", xlim = range(mz(spl)),
#'     ylim = range(intensity(spl)))
#' points(mz(sp2), intensity(sp2), type = "h", col = "#00ff0080", lwd = 2)
#' points(mz(sp3), intensity(sp3), type = "h", col = "#0000ff80", lwd = 2)
#'
#' cons <- consensusSpectrum(spl, mzd = 0.02, minProp = 2/3)
#'
#' ## Peaks of the consensus spectrum
#' mz(cons)
#' intensity(cons)
#'
#' ## Other Spectrum data is taken from the first Spectrum in the list
#' rtime(cons)
#' precursorMz(cons)
#'
#' plot(mz(cons), intensity(cons), type = "h", xlab = "m/z", ylab = "intensity",
#'     xlim = range(mz(spl)), ylim = range(intensity(spl)), lwd = 2)
#'
consensusSpectrum <- function(x, mzd = 0, minProp = 0.5,
                              intensityFun = stats::median,
                              mzFun = stats::median, ppm = 0,
                              weighted = FALSE, ...) {
    if (length(x) == 1)
        return(x[[1]])
    if (!is(x, "MSpectra"))
        x <- MSpectra(x)
    if (length(unique(msLevel(x))) != 1)
        stop("Can only combine spectra with the same MS level")
    xnew <- x[[1]]                      # data from the first peak.
    mzs <- mz(x)
    mzs_lens <- base::lengths(mzs)
    mzs <- unlist(mzs, use.names = FALSE)
    mz_order <- base::order(mzs)
    mzs <- mzs[mz_order]
    ints <- unlist(intensity(x), use.names = FALSE)[mz_order]
    keep <- which(ints > 0)
    mzs <- mzs[keep]
    ints <- ints[keep]
    mz_groups <- .group_mz_values(mzs, mzd = mzd, ppm = ppm)
    mzs <- split(mzs, mz_groups)
    ints <- split(ints, mz_groups)
    keep <- lengths(mzs) >= (length(x) * minProp)
    if (any(keep)) {
        if (weighted) {
            wm <- stats::weighted.mean
            xnew@mz <- mapply(mzs[keep], ints[keep], FUN = function(mz_vals, w)
                wm(mz_vals, w + 1, na.rm = TRUE), USE.NAMES = FALSE)
        } else
            xnew@mz <- base::vapply(mzs[keep], FUN = mzFun,
                                    FUN.VALUE = numeric(1),
                                    USE.NAMES = FALSE, ...)
        xnew@intensity <- base::vapply(ints[keep], FUN = intensityFun,
                                       FUN.VALUE = numeric(1),
                                       USE.NAMES = FALSE, ...)
    } else {
        warning("No peak present in more than ", minProp * 100, "% of spectra.")
        xnew@mz <- numeric()
        xnew@intensity <- numeric()
    }
    xnew@peaksCount <- length(xnew@mz)
    if (validObject(xnew)) xnew
}
lgatto/MSnbase documentation built on Nov. 12, 2024, 10:58 a.m.