R/sampleDepth.R

Defines functions .sampleCorradaAdj .calcQuantile sampleDepth

Documented in sampleDepth

#' Calculate adjustments for library size
#'
#' For a given data set calculate the per-sample coverage adjustments. Hector
#' Corrada's group proposed calculating the sum of the coverage for genes below
#' a given sample quantile. In this function, we calculate the sample quantiles
#' of interest by sample, and then the sum of the coverage for bases below or
#' equal to quantiles of interest. The resulting values are transformed {log2(x
#' + scalefac)} to avoid very large numbers that could potentially affect the
#' stability of the F-statistics calculation. The sample coverage adjustments
#' are then used in [makeModels] for constructing the null and alternative
#' models.
#'
#' @param collapsedFull The full coverage data collapsed by sample as produced
#' by [collapseFullCoverage].
#' @param probs Number(s) between 0 and 1 representing the quantile(s) of
#' interest. For example, 0.5 is the median.
#' @param scalefac Number added to the sample coverage adjustments before the
#' log2 transformation.
#' @param ... Arguments passed to other methods and/or advanced arguments.
#' Advanced arguments:
#' \describe{
#' \item{verbose }{ If `TRUE` basic status updates will be printed along
#' the way.}
#' \item{nonzero }{ If `TRUE` only the nonzero counts are used to
#' calculate the library size adjustment. Default: `TRUE`.}
#' \item{center }{ If `TRUE` the sample coverage adjustements are
#' centered. In some cases, this could be helpful for interpretation purposes.
#' Default: `FALSE`.}
#' }
#'
#' @return
#' A matrix (vector of `length(probs) == 1`) with the library size depth
#' adjustments per sample to be used in [makeModels]. The number of rows
#' corresponds to the number of quantiles used for the sample adjustments.
#'
#' @references
#' Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance
#' analysis for microbial marker-gene surveys. Nat. Methods (2013).
#' doi:10.1038/nmeth.2658
#'
#' @author Leonardo Collado-Torres
#' @seealso [collapseFullCoverage], [makeModels]
#' @export
#' @importFrom Hmisc wtd.quantile
#' @examples
#' ## Collapse the coverage information
#' collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
#'     verbose = TRUE
#' )
#'
#' ## Calculate library size adjustments
#' sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5, 1), verbose = TRUE)
#' sampleDepths
sampleDepth <- function(collapsedFull, probs = c(0.5, 1), scalefac = 32, ...) {
    ## Check probs are valid
    stopifnot(all(probs >= 0) & all(probs <= 1))

    ## Advanged arguments
    # @param verbose If \code{TRUE} basic status updates will be printed along the
    # way.
    verbose <- .advanced_argument("verbose", TRUE, ...)


    # @param nonzero If \code{TRUE} only the nonzero counts are used to calculate
    # the library size adjustment.
    nonzero <- .advanced_argument("nonzero", TRUE, ...)


    # @param center If \code{TRUE} the sample coverage adjustements are centered.
    # In some cases, this could be helpful for interpretation purposes.
    center <- .advanced_argument("center", FALSE, ...)


    if (verbose) {
        message(paste(Sys.time(), "sampleDepth: Calculating sample quantiles"))
    }
    sampleQuant <- lapply(collapsedFull, .calcQuantile,
        nonzero = nonzero,
        probs = probs
    )

    if (verbose) {
        message(paste(
            Sys.time(),
            "sampleDepth: Calculating sample adjustments"
        ))
    }
    sampleDepths <- mapply(.sampleCorradaAdj, collapsedFull,
        sampleQuant,
        MoreArgs = list(scalefac = scalefac, center = center)
    )

    ## Done =)
    return(sampleDepths)
}

## Function for calculating the quantiles
.calcQuantile <- function(x, nonzero, probs) {
    values <- x$values
    weights <- x$weights
    if (nonzero) {
        idx <- which(values == 0)
        values <- values[-idx]
        weights <- weights[-idx]
    }
    wtd.quantile(values, weights = weights, probs = probs)
}

## Function for calculating the Hector Corrada-type sample
## depth adjustments
.sampleCorradaAdj <- function(collapsedF, quants, scalefac, center) {
    sapply(quants, function(z) {
        idx <- which(collapsedF$values <= z)
        adj <- sum(collapsedF$weights[idx] * collapsedF$values[idx])
        res <- log2(adj + scalefac)
        if (center) {
            res <- res - mean(res)
        }
        return(res)
    })
}
lcolladotor/derfinder documentation built on May 4, 2024, 5:38 p.m.