#' @title Converts the Protein ID column of the evidence
#' file selected by the user to mod-site-specific notation:
#' `ProteinID` to `ProteinID_AAnumber` notation
#'
#' @description It enables the modified-peptide specific quantification by
#' converting the Protein column of the evidence file selected by the user
#' to an `ProteinID_AAnumber`notation.
#' In this way, each of the modified peptides can be quantified
#' independently across conditions.
#'
#' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#'
#' WARNING: we have detected a version of MaxQuant (>1.6.3.0) outputs a`
#' "Modified sequence" column of the evidence file that has two important
#' changes for the annotation of phosphorylation:
#' - Uses `p` instead of `(ph)`
#' - The modified residue (i.e. `STY`) is the residue on the right of the `p`,
#' instead of the residue to the left of `(ph)`, as usual.
#' We have introduced a modification to detect and address this issue, but
#' we advice the user to double check both the new evidence file with the
#' introduce new notation and the `-mapping.txt` file and check that there
#' are no NA values for the notation of phophopeptides.
#'
#' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#'
#' @param evidence_file (char) The evidence file name and location
#' @param column_name (char) The Protein Column Name to map. Options:
#' - `Leadind razor protein` (default)
#' - `Leading protein`
#' - `Proteins`
#' It only supports Uniprot Entry IDs and RefSeq, but it might work for
#' other database IDs
#' @param ref_proteome_file (char) The reference proteome used as database
#' to search the `evidence.txt` file with MaxQuant. It will be used to map the
#' modified peptide to the protein sequence and find the site location.
#' Therefore, it does not use the MaxQuant's `Phospho (STY)Sites.txt`
#' @param output_file (char) Output file name
#' (`ptmsites-evidence.txt` recommended)
#' @param overwrite_evidence (logical) if <output_file> is the same
#' as <evidence_file>, `overwrite_evidence = FALSE` (default) doesn't allow to
#' overwrite the evidence file. Otherwise, `overwrite_evidence = TRUE` allows
#' to overwrite the evidence_file (this option might be activated if the user
#' allows to use the same `ptm-sites-evidence.txt` file to re-annotate all
#' the Protein IDs columns)
#' @param mod_type (char) The posttranslational modification. Options:
#' - `UB`: Protein Ubiquitination
#' - `PH`: Protein Phosphorylation
#' - `AC`: Protein Acetylation
#' - `PTM:XXX:yy` : User defined PTM. Replace XXX with 1 or more 1-letter amino
#' acid codes on which to find modifications (all uppercase). Replace yy with
#' modification name used within the evidence file (require lowercase characters).
#' Example: `PTM:STY:ph` will find modifications on aa S,T,Y with this
#' format `_AAGGAPS(ph)PPPPVR_`. This would be equivalent to `mod_type = PH`
#' @param verbose (logical) `TRUE` (default) shows function messages
#' @return (file) Return a new evidence file with the specified Protein id
#' column modified by adding the sequence site location(s) + postranslational
#' modification(s) to the uniprot entry / refseq id.
#'
#' Output ID examples: `A34890_ph3`; `Q64890_ph24_ph456`;
#' `Q64890_ub34_ub129_ub234`; `Q64890_ac35`.
#' @keywords evidence, convert, ptm, ph, ub, ac
#' @examples
#' # Testing warning if files are not submitted.
#' artmsProtein2SiteConversion(evidence_file = NULL, ref_proteome_file = NULL,
#' output_file = NULL)
#' @export
artmsProtein2SiteConversion <- function (evidence_file,
ref_proteome_file,
column_name = c('Leading razor protein',
'Leading proteins',
'Proteins'),
output_file,
mod_type,
overwrite_evidence = FALSE,
verbose = TRUE) {
if(is.null(evidence_file) &
is.null(ref_proteome_file) &
is.null(output_file)){
return("Files must not be NULL")
}
if(any(missing(evidence_file) |
missing(ref_proteome_file) |
missing(output_file) |
missing(mod_type)))
stop("Missed (one or many) required argument(s)
Please, check the help of this function to find out more")
# expect format like PTM:STY:ph where STY and ph can be set to any set of amino acids and any case-sensitive name used in evidence file
if (substr(mod_type, 1, 4) == "PTM:"){
parsed <- .parseFlexibleModFormat(mod_type)
if (is.null(parsed))
stop("Error: unexpected format for specifying a user-defined modification type", mod_type)
mod_type <- parsed[1]
maxq_mod_residue <- parsed[2]
mod_residue <- parsed[3]
}else{
mod_type <- toupper(mod_type)
if(!mod_type %in% c("PH", "UB", "AC"))
stop("the mod_type ", mod_type, " is not supported")
}
# CHECK PROTEIN COLUMN
column_name <- match.arg(column_name)
# When the evidence file is not a data.frame, check that it does not have
# the same as the output file
if(is.vector(evidence_file)){
if(!overwrite_evidence){
if(evidence_file == output_file)
stop("<output_file> cannot be the same as <evidence_file>.
If you are confident about overwritting the evidence file,
then make the argument 'overwrite_evidence = TRUE'")
}
}
if(verbose){
message("-------------------------------------------------------------")
message("artMS: Annotate Protein ID column to ProteinID_Site notation ")
message("-------------------------------------------------------------")
}
if(verbose)
message(">> FILTERING MODIFIED PEPTIDES")
if (mod_type == 'UB') {
if(verbose) message('--- SELECTING << UB >> MODIFIED PEPTIDES ')
maxq_mod_residue <- 'K\\(gl\\)'
mod_residue <- 'K'
} else if (mod_type == 'PH') {
if(verbose) message('--- SELECTING << PH >> MODIFIED PEPTIDES ')
maxq_mod_residue <- '(S|T|Y)\\(ph\\)'
mod_residue <- 'S|T|Y'
} else if (mod_type == 'AC') {
if(verbose) message('--- SELECTING << AC >> MODIFIED PEPTIDES ')
maxq_mod_residue <- 'K\\(ac\\)'
mod_residue <- 'K'
} else if (mod_type == "PTM"){
if(verbose) message ("--- SELECTING PEPTIDES MODIFIED WITH USER DEFINED PTM, with this regex: ", maxq_mod_residue)
} else{
stop(
mod_type, " is not supported.
Check help to get the list of supported PTMs"
)
}
## map mod sites in data to index
if(verbose) message("--- OPENING EVIDENCE FILE ")
## read in maxq. data
maxq_data <- .artms_checkIfFile(evidence_file, dont_check_names = FALSE)
maxq_data <- as.data.table(maxq_data)
# Check maxquant version:
if("Leading Razor Protein" %in% colnames(maxq_data))
setnames(maxq_data, 'Leading Razor Protein', 'Leading razor protein')
if("Leading Proteins" %in% colnames(maxq_data))
setnames(maxq_data, 'Leading Proteins', 'Leading proteins')
# remove contaminants, keep unique sequences, fix names
maxq_data <- maxq_data[grep("CON__|REV__", maxq_data$Proteins, invert = TRUE), ]
maxq_data <- maxq_data[grep("CON__|REV__", maxq_data$`Leading proteins`, invert = TRUE), ]
# In case the evidence file comes as data.frame
if("Modified sequence" %in% colnames(maxq_data)){
if(verbose) message("---(+) 'Modified sequence' column available")
}else if("Modified.sequence" %in% colnames(maxq_data)){
setnames(maxq_data, 'Modified.sequence', 'Modified sequence')
}else{
stop("Problem with evidence file: <Modified sequence> column not found")
}
# Fix PROTEIN id when coming with the full uniprot id
if(any(grepl("(^sp\\|)(.*)(\\|.*)", maxq_data$Proteins)))
maxq_data$Proteins <- gsub("(sp\\|)(.*)(\\|.*)", "\\2", maxq_data$Proteins)
if(any(grepl("(^sp\\|)(.*)(\\|.*)", maxq_data$`Leading proteins`)))
maxq_data$`Leading proteins` <- gsub("(sp\\|)(.*)(\\|.*)", "\\2", maxq_data$`Leading proteins`)
if(any(grepl("(^sp\\|)(.*)(\\|.*)", maxq_data$`Leading razor protein`)))
maxq_data$`Leading razor protein` <- gsub("(sp\\|)(.*)(\\|.*)", "\\2", maxq_data$`Leading razor protein`)
if(any(grepl("(^tr\\|)(.*)(\\|.*)", maxq_data$Proteins)))
maxq_data$Proteins <- gsub("(tr\\|)(.*)(\\|.*)", "\\2", maxq_data$Proteins)
if(any(grepl("(^tr\\|)(.*)(\\|.*)", maxq_data$`Leading proteins`)))
maxq_data$`Leading proteins` <- gsub("(tr\\|)(.*)(\\|.*)", "\\2", maxq_data$`Leading proteins`)
if(any(grepl("(^tr\\|)(.*)(\\|.*)", maxq_data$`Leading razor protein`)))
maxq_data$`Leading razor protein` <- gsub("(tr\\|)(.*)(\\|.*)", "\\2", maxq_data$`Leading razor protein`)
# PH: Check if the protein has already been annotated;
if( length( grep("_S\\d", maxq_data[[column_name]]) ) > 10 )
stop("The protein column <", column_name, "> seems to be already converted
to ptm-site/peptide specific notation.
Otherwise, notice that this function only support Uniprot Entry Id or Refseq")
# UB: check annotated already
if( length( grep("_K\\d", maxq_data[[column_name]]) ) > 10 )
stop("The protein column <", column_name, "> seems to be already converted
to ptm-site/peptide specific notation.
Otherwise, notice that this function only support Uniprot Entry Id or Refseq.
If the proteins are still Uniprot Entry IDs and the file has not been converted already, please, contact artMS developers")
if (mod_type == 'PH') {
if(any(grepl("pS", maxq_data$`Modified sequence`)) |
any(grepl("pT", maxq_data$`Modified sequence`)) |
any(grepl("pY", maxq_data$`Modified sequence`)) ){
message("\n____________________________________________________________")
message("| WARNING: ")
message("| The version of MaxQuant that generated this evidence file")
message("| introduced changes in the <Modified Sequence> column that requires some changes.")
message("| Basically, the phosphorylation site is indicated as 'pS' instead of '(ph)' as in other versions")
message("| Next: artMS will apply changes to return to the previous notation")
message("____________________________________________________________\n")
maxq_data$`Modified sequence` <- gsub("pS", "S(ph)", maxq_data$`Modified sequence`)
maxq_data$`Modified sequence` <- gsub("pT", "T(ph)", maxq_data$`Modified sequence`)
maxq_data$`Modified sequence` <- gsub("pY", "Y(ph)", maxq_data$`Modified sequence`)
}
}
if( any(grepl("Phospho", maxq_data$`Modified sequence`)) |
any(grepl("GlyGly", maxq_data$`Modified sequence`)) |
any(grepl("Carbamidomethyl", maxq_data$`Modified sequence`)) |
any(grepl("Oxidation", maxq_data$`Modified sequence`)) |
any(grepl("Acetyl", maxq_data$`Modified sequence`))
){
if(verbose) message("--- Long notation detected in <Modified sequence> column: converting to short notation")
maxq_data$ModifiedSequenceLong <- maxq_data$`Modified sequence`
maxq_data$`Modified sequence` <- .convertLong2ShortPTMFormat(specModSequence = maxq_data$`Modified sequence`)
}
if(verbose) message("--- READING REFERENCE PROTEOME ")
## read in reference proteome
ref_proteome <- read.fasta(file = ref_proteome_file,
seqtype = "AA",
as.string = TRUE,
set.attributes = TRUE,
legacy.mode = TRUE,
seqonly = FALSE,
strip.desc = FALSE)
## make mod-site index
p_seqs <- c()
p_names <- c()
p_annots <- c()
for (e in ref_proteome) {
p_seqs <- c(p_seqs, e[1])
p_names <- c(p_names, attr(e, 'name'))
p_annots <- c(p_annots, attr(e, 'Annot'))
}
ref_table <- data.table(names = p_names,
annots = p_annots,
seqs = p_seqs)
# REFSEQ database
ref_table[, uniprot_ac := gsub('([a-z,0-9,A-Z,\\.,\\_]+)', '\\1', names)]
# UNIPROT
ref_table[, uniprot_ac := gsub('([a-z,0-9,A-Z]+\\|{1})([A-Z,0-9,\\_, \\-]+)(\\|[A-Z,a-z,0-9,_]+)',
'\\2', names)]
# get all indicies/locations of the mod_residue S|T|Y
indices <- lapply(ref_table$seqs, function(x)
as.vector(str_locate_all(x, pattern = mod_residue)[[1]][, 1]))
# list which residue it actually finds at each location
ptm_sites <- lapply(ref_table$seqs, function(x)
as.vector(str_match_all(x, pattern = mod_residue)))
# get the number of residue locations per string
lengths <- unlist(lapply(indices, FUN = length))
# repeate the uniprot_ac as many times as a residue (S|T|Y) is found
keys <- rep(ref_table$uniprot_ac, lengths)
# combine the list of the exploded proteins (above) and add in which sites
# are found as well as the location the residue was found in
protein_indices <- data.table(uniprot_ac = keys,
ptm_site = unlist(ptm_sites),
res_index = unlist(indices))
# EXTRACT PTM POSITIONS FROM MODIFIED PEPTIDES IN EVIDENCE FILE
unique_peptides_in_data <- unique(maxq_data[, c(column_name, 'Modified sequence'), with = FALSE])
setnames(unique_peptides_in_data, 'Modified sequence', 'sequence')
mod_sites <- c()
mod_seqs <- c()
# keep a count of peptides with mod found in file
num_mod_peptides <- 0
if(verbose) message("--- EXTRACTING PTM POSITIONS FROM THE MODIFIED PEPTIDES
(This might take a long time depending on the size of the fasta/evidence file) ")
for (i in seq_len(nrow(unique_peptides_in_data))) {
entry <- unique_peptides_in_data[i, ]
peptide_seq <- entry$sequence
## cleanup the sequence (removing all modifications) for matching the
## protein sequence
peptide_seq_clean <- gsub('[a-z,0-9,\\(,\\),_]', '', peptide_seq)
mod_sites_in_peptide <-
str_locate_all(string = peptide_seq, pattern = maxq_mod_residue)[[1]][, 1]
if (length(mod_sites_in_peptide) > 0) {
num_mod_peptides <- num_mod_peptides + 1
uniprot_acs <- entry[[column_name]]
# separates the ambiguous cases (;) and appends the site info to all
# the proteins
uniprot_acs <- str_split(string = uniprot_acs, pattern = ';')[[1]]
for (uac in uniprot_acs) {
# find the protein's full sequence based on the uniprot_ac
protein_seq <- ref_table[uniprot_ac == uac, ]$seqs
if (length(protein_seq) > 0) {
## get the position of the peptide in the protein sequence
peptide_index_in_protein <- str_locate(protein_seq, peptide_seq_clean)[[1]][1]
for (m in seq_len(length(mod_sites_in_peptide))) {
mod_site <- mod_sites_in_peptide[m]
peptide_seq_before_site <-
str_sub(peptide_seq, 1, mod_site - 1)
## count all AA (not counting all modifications) before the
## modification to get the relative position of the modification
## in the peptide sequence
residues_before_site <-
str_count(string = peptide_seq_before_site,
pattern = 'A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|Y')
mod_site_index_in_protein <-
peptide_index_in_protein + residues_before_site
protein_mod_sites <- protein_indices[uniprot_ac == uac, ]
if (!is.na(mod_site_index_in_protein)) {
mod_res <-
protein_mod_sites[res_index == mod_site_index_in_protein,
ptm_site]
mod_site_id <-
sprintf(
'%s_%s%s',
uac,
str_sub(
protein_seq,
mod_site_index_in_protein,
mod_site_index_in_protein
),
mod_site_index_in_protein
)
mod_sites <- c(mod_sites, mod_site_id)
mod_seqs <- c(mod_seqs, peptide_seq)
# message("mod_site_id ", mod_site_id, " peptide_seq ",peptide_seq)
# stopifnot(length(mod_sites) == length(mod_seqs))
} else{
message(
sprintf(
'MISMATCH\t%s\n\tPEPTIDE_SEQ\t%s\n\tMOD_SITE\t%s\n\t
PEPTIDE_IDX_IN_PROTEIN\t%s\n\tRESIDUES_BEFORE_SITE
\t%s\n\tPROTEIN_SEQ\t%s\n',
mod_site_id,
peptide_seq,
mod_site,
peptide_index_in_protein,
residues_before_site,
protein_seq
)
)
}
}
}else{
message("- Protein <", uac, "> not in the sequence database")
}
}
}
}
# CHECK that the mapping went well
if (num_mod_peptides == 0)
stop("No peptides were found in the evidence file with the selected modification")
if(is.null(mod_seqs))
stop("Protein IDs from evidence file and sequence database do not match.
Are you sure that you are using the right sequence database?")
if(is.null(mod_sites))
stop("Protein IDs from evidence file and sequence database do not match.
Are you sure that you are using the right sequence database?")
mod_site_mapping <- data.table(mod_sites, mod_seqs)
mod_site_mapping_agg <- aggregate(mod_sites ~ mod_seqs,
mod_site_mapping,
FUN = function(x) paste(x, collapse = ';'))
setnames(maxq_data, 'Modified sequence', 'mod_seqs')
unmapped_mod_seqs <- maxq_data[!(mod_seqs %in% mod_site_mapping_agg$mod_seqs) &
grepl('(gl)', mod_seqs) & !grepl('REV__|CON__', eval(column_name)), ]
unmapped_mod_seqs <- unique(unmapped_mod_seqs[, c('mod_seqs', column_name), with = FALSE])
if (dim(unmapped_mod_seqs)[1] > 0) {
if(verbose) message('>> UNABLE TO MAP \t')
if(verbose) print(unmapped_mod_seqs)
} else{
if(verbose) message("--- ALL SEQUENCES MAPPED ")
}
final_data <- merge(maxq_data, mod_site_mapping_agg, by = 'mod_seqs')
ref_protein_column <- paste0(column_name, " Ref")
setnames(
final_data,
c(column_name, 'mod_sites', 'mod_seqs'),
c(ref_protein_column, column_name, 'Modified sequence')
)
final_data <- as.data.frame(final_data)
final_data <- final_data %>% dplyr::select(column_name, everything())
write.table(
final_data,
file = output_file,
eol = '\n',
sep = '\t',
quote = FALSE,
row.names = FALSE,
col.names = TRUE
)
## write a mapping table
protein_seq_mapping <-
unique(maxq_data[, c(column_name, 'mod_seqs'), with = FALSE])
# setnames(protein_seq_mapping, eval(column_name), 'Protein')
mapping_table <- merge(protein_seq_mapping,
mod_site_mapping_agg,
by = 'mod_seqs',
all = TRUE)
write.table(
mapping_table,
file = gsub('.txt', '-mapping.txt', output_file),
eol = '\n',
sep = '\t',
quote = FALSE,
row.names = FALSE,
col.names = TRUE
)
if(verbose)
message(
">> FILES OUT:\n",
"--- New evidence-site file: ",
output_file,
"\n",
"--- Details of the Mappings: ",
gsub('.txt', '-mapping.txt', output_file)
)
if(verbose) message(">> CONVERSION COMPLETED")
}
# @title Convert PTM long notation to short
#
# @description One version of MaxQuant annotates the peptides in a strange way
# XXXXS(Phospho (STY))XXXX. This function converts them to the old notation
# @param specModSequence (vector)
# @param mods (char) the PTM modification: PH, UB, CAM, MOX, NAC
# @keywords PTM
.convertLong2ShortPTMFormat <- function(specModSequence,
mods=c("PH", "UB", "CAM", "MOX", "NAC", "AC")){
result <- specModSequence
specFormats <- list (PH = '([STY])[[(]Phospho \\(STY\\)[])]',
UB = '(K)[[(]GlyGly \\(K\\)[])]',
CAM = '([C])[[(]Carbamidomethyl \\(C\\)[])]',
MOX = '([M])[[(]Oxidation \\(M\\)[])]',
NAC = '([A-Z_])[[(]Acetyl \\(Protein N-term\\)[])]',
AC = '([A-Z_])[[(]Acetyl \\(K\\)[])]')
artmsFormats <- list (PH ='\\1\\(ph\\)',
UB ='\\1\\(gl\\)',
CAM = '\\1\\(cam\\)',
MOX = '\\1\\(ox\\)',
NAC = '\\1\\(ac\\)',
AC = '\\1\\(ac\\)')
stopifnot(names(specFormats)==names(artmsFormats))
for (mod in mods){
if (mod %in% names(specFormats)){
result <- gsub(specFormats[[mod]], artmsFormats[[mod]], result)
}else{
(stop("I don't know how to deal with requested mod: ", mod))
}
}
return (result)
}
# @title Parse Flexible PTM format
#
# @description One version of MaxQuant annotates the peptides in a strange way
# XXXXS(Phospho (STY))XXXX. This function converts them to the old notation
# @inputStr input string. It should be
# @param mods (char) the PTM modification: PH, UB, CAM, MOX, NAC
# @keywords PTM
.parseFlexibleModFormat <- function(inputStr){
parts <- unlist(strsplit(inputStr, split = ":"))
if (length(parts) != 3){
message("PTM format requires exactly three parts separated by colons (:); example PTM:STY:ph")
return (NULL)
}
if (grepl("[^A-Z]", parts[2])){
message ("The second position in ", inputStr," must be all uppercase characters specifying amino acids by their 1-letter code")
return (NULL)
}
if (grepl("[^a-z]", parts[3])){
message ("The PTM name used in the evidence file, and the third position in ", inputStr, " must be all lowercase characters")
# possibly numeric characters and "_" could be used as currently coded, but to be safe...
return (NULL)
}
# take something like STY, split then paste to S|T|Y
mod_residue <- paste(unlist(strsplit(parts[2], split = "")), collapse = "|")
maxq_mod_residue <- paste0("(", mod_residue, ")", "\\(", parts[3], "\\)", collapse = "")
return (c(parts[1], maxq_mod_residue, mod_residue))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.