# This checks the parallelPCA function.
# require(PCAtools); require(testthat); source("setup.R"); source("test-parallel-pca.R")
set.seed(1001)
test_that("parallelPCA works as expected", {
threshold <- 0.1
pcs <- parallelPCA(lcounts, niters=20, threshold=threshold)
permuted <- pcs$permuted
original <- pcs$original$variance
pvals <- rowMeans(permuted >= original)
expect_identical(pcs$n, min(which(pvals > threshold)-1L))
expect_true(sum(original) <= 100)
expect_true(all(rowSums(permuted) <= 100))
expect_identical(ncol(permuted), 20L)
var.exp <- prcomp(t(lcounts))$sdev^2
frac.exp <- var.exp/sum(var.exp)
expect_equal(frac.exp[seq_along(original)], unname(original)/100)
# Respects max.rank when choosing the number of PCs.
set.seed(100)
pcs.x <- parallelPCA(lcounts, niters=3, max.rank=5)
expect_identical(ncol(pcs.x$original$rotated), 5L)
expect_identical(pcs.x$original$rotated, pcs$original$rotated[,1:5])
})
test_that("parallelPCA respects the seed", {
set.seed(100)
pcs <- parallelPCA(lcounts, niters=3)
set.seed(100)
pcs2 <- parallelPCA(lcounts, niters=3)
expect_identical(pcs2, pcs)
pcs3 <- parallelPCA(lcounts, niters=3)
expect_false(identical(pcs3, pcs))
# With irlba:
set.seed(100)
ipcs <- parallelPCA(lcounts, niters=3, BSPARAM=BiocSingular::IrlbaParam(), max.rank=10)
set.seed(100)
ipcs2 <- parallelPCA(lcounts, niters=3, BSPARAM=BiocSingular::IrlbaParam(), max.rank=10)
expect_identical(pcs, pcs2)
expect_identical(ncol(ipcs), ncol(pcs))
# With parallelization.
BPPARAM <- BiocParallel::SnowParam(3) # define BEFORE set.seed, otherwise this sets its own seed.
set.seed(100)
alt <- parallelPCA(lcounts, niters=3, BPPARAM=BPPARAM)
expect_identical(alt, pcs)
})
set.seed(1002)
test_that("parallelPCA's C++ code works as expected", {
trans <- t(lcounts)
ptr <- beachmat::initializeCpp(trans)
shuffled <- PCAtools:::shuffle_matrix(ptr, 1, 1L)
expect_false(identical(shuffled, trans))
expect_identical(apply(shuffled, 2, sort), apply(trans, 2, sort))
expect_true(is.matrix(shuffled))
# Is reproducible.
shuffled2 <- PCAtools:::shuffle_matrix(ptr, 1, 1L)
expect_identical(shuffled, shuffled2)
# Responds to the seed.
shuffled3 <- PCAtools:::shuffle_matrix(ptr, 2, 1L)
expect_false(identical(shuffled, shuffled3))
expect_identical(apply(shuffled, 2, sort), apply(shuffled3, 2, sort))
# Responds to the stream.
shuffled4 <- PCAtools:::shuffle_matrix(ptr, 1, 2L)
expect_false(identical(shuffled, shuffled4))
expect_identical(apply(shuffled, 2, sort), apply(shuffled4, 2, sort))
# Same results with a sparse matrix.
sptrans <- as(trans, "dgCMatrix")
spptr <- beachmat::initializeCpp(sptrans)
spshuffled <- PCAtools:::shuffle_matrix(spptr, 1, 1L)
expect_s4_class(spshuffled, "dgCMatrix")
expect_identical(as.matrix(spshuffled), shuffled)
})
set.seed(1003)
test_that("parallelPCA responds to different settings", {
set.seed(100)
pcs <- parallelPCA(lcounts, niters=3)
set.seed(100)
pcs1 <- parallelPCA(t(lcounts), transposed=TRUE, niters=3)
expect_identical(pcs, pcs1)
set.seed(100)
pcs2 <- parallelPCA(lcounts, scale=TRUE, niters=3)
expect_false(identical(pcs$original, pcs2$original))
expect_false(identical(pcs$permuted, pcs2$permuted))
set.seed(100)
pcs3 <- parallelPCA(lcounts, removeVar=0.5, niters=3)
expect_false(identical(pcs$original, pcs3$original))
expect_false(identical(pcs$permuted, pcs3$permuted))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.