getVars: Return the explained variation for each principal component...

View source: R/getVars.R

getVarsR Documentation

Return the explained variation for each principal component for an object of class 'pca'.

Description

Return the explained variation for each principal component for an object of class 'pca'.

Usage

getVars(pcaobj, components = NULL)

Arguments

pcaobj

Object of class 'pca' created by pca().

components

Indices of the principal components whose explained variances will be returned. If NULL, all values will be returned.

Details

Return the explained variation for each principal component for an object of class 'pca'.

Value

A numeric object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

  options(scipen=10)
  options(digits=6)

  col <- 20
  row <- 20000
  mat1 <- matrix(
    rexp(col*row, rate = 0.1),
    ncol = col)
  rownames(mat1) <- paste0('gene', 1:nrow(mat1))
  colnames(mat1) <- paste0('sample', 1:ncol(mat1))

  mat2 <- matrix(
    rexp(col*row, rate = 0.1),
    ncol = col)
  rownames(mat2) <- paste0('gene', 1:nrow(mat2))
  colnames(mat2) <- paste0('sample', (ncol(mat1)+1):(ncol(mat1)+ncol(mat2)))

  mat <- cbind(mat1, mat2)

  metadata <- data.frame(row.names = colnames(mat))
  metadata$Group <- rep(NA, ncol(mat))
  metadata$Group[seq(1,40,2)] <- 'A'
  metadata$Group[seq(2,40,2)] <- 'B'
  metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
  metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

  p <- pca(mat, metadata = metadata, removeVar = 0.1)

  getVars(p)


kevinblighe/PCAtools documentation built on Oct. 22, 2023, 12:01 p.m.