shortenIntrons <- function(introns, intron_length){
#Shorten introns from a fixed length to a variable length
#Calculate neccesary parameters
exons = IRanges::gaps(introns)
n_introns = length(introns)
n_exons = length(exons)
#Calculate cumulative with of introns
intron_cum_width = seq(intron_length,(n_introns-1)*intron_length,intron_length)
#Calculate new exon starts ignoring introns
new_intron_starts = c(1,IRanges::start(introns)[2:n_introns] - (IRanges::end(introns)[1:n_introns-1] - intron_cum_width))
#Add exon widths to the introns
new_intron_starts = new_intron_starts + c(0,cumsum(IRanges::width(exons)) - IRanges::width(exons))
new_introns = IRanges::IRanges(start = new_intron_starts, width = rep(intron_length, n_introns))
return(new_introns)
}
shrinkIntronsCoverage <- function(coverage, old_introns, new_introns){
#Covert coverage vector from Rle to normal vector
coverage = S4Vectors::as.vector.Rle(coverage, mode = "double")
#Calculate full annotations
old_annot = S4Vectors::sort(c(old_introns, IRanges::gaps(old_introns)))
new_annot = S4Vectors::sort(c(new_introns, IRanges::gaps(new_introns)))
#If new and old annotations are identical then return coverage as data frame
if(all(IRanges::width(old_annot) == IRanges::width(new_annot))){
bins = seq(min(IRanges::start(new_annot)), max(IRanges::end(new_annot)))
#Make sure that coverage vector and bins vector have equal length
assertthat::assert_that(assertthat::are_equal(length(bins), length(coverage)))
new_coverage = dplyr::data_frame(bins = bins, coverage = coverage)
return(new_coverage)
} else{ #Otherwise shrink intron converage
#Calculate the width of each annotation bin
bin_width = ceiling(IRanges::width(old_annot)/IRanges::width(new_annot))
#Build summarisation groups
s_coord = IRanges::start(new_annot)
e_coord = IRanges::end(new_annot)
w_old = IRanges::width(old_annot)
bins = c()
for (i in seq_along(new_annot)){
bin_id = rep(c(s_coord[i]:e_coord[i]),each = bin_width[i])[1:w_old[i]]
bins = c(bins, bin_id)
}
#Calculate mean coverage in bins
df = data.frame(coverage, bins)
new_coverage = dplyr::summarize(dplyr::group_by(df, bins), coverage = mean(coverage))
return(new_coverage)
}
}
translateExonCoordinates <- function(exons, old_introns, new_introns){
#Tranlate exon coordinates by shortening introns
old_exon_starts = IRanges::start(exons)
old_intron_ends = IRanges::end(old_introns)
new_intron_ends = IRanges::end(new_introns)
#Translate old exon coordinates to new exon coordinates
new_exon_starts = rep(0,length(old_exon_starts))
for (i in seq_along(old_exon_starts)){
#Find the nearest upstream intron for the current gene
nearest_intron_number = max(which(old_exon_starts[i] > old_intron_ends))
new_exon_starts[i] = old_exon_starts[i] - old_intron_ends[nearest_intron_number] + new_intron_ends[nearest_intron_number]
}
#Create new exon coordinates
new_exons = IRanges::IRanges(start = new_exon_starts, width = IRanges::width(exons))
return(new_exons)
}
rescaleIntrons <- function(exons, cdss, joint_exons, new_intron_length, flanking_length){
#Convert exons and cds objects to ranges
exon_ranges = lapply(exons, GenomicRanges::ranges)
cds_ranges = lapply(cdss, GenomicRanges::ranges)
#Shorten introns and translate exons into the new exons
old_introns = intronsFromJointExonRanges(GenomicRanges::ranges(joint_exons), flanking_length = flanking_length)
new_introns = shortenIntrons(old_introns,new_intron_length)
new_exon_ranges = lapply(exon_ranges, translateExonCoordinates, old_introns, new_introns)
new_cds_ranges = lapply(cds_ranges, translateExonCoordinates, old_introns, new_introns)
return(list(exon_ranges = new_exon_ranges, cds_ranges = new_cds_ranges,
old_introns = old_introns, new_introns = new_introns))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.