inst/examples/05.example-shiny.R

# Shiny app development

##############################################################
# title: A single Shiny app with two interactive heatmap widgets.

set.seed(8)
m1 = matrix(rnorm(100*100), 100)
ht1 = Heatmap(m1)
ht1 = draw(ht1)
m2 = matrix(sample(letters[1:10], 100, replace = TRUE), 10)
ht2 = Heatmap(m2)
ht2 = draw(ht2)

# Remember now each `InteractiveComplexHeatmapOutput()` must specify the heatmap ID.
ui = fluidPage(
    h3("The first heatmap"),
    InteractiveComplexHeatmapOutput("heatmap_1", height1 = 300, height2 = 300),
    hr(),
    h3("The second heatmap"),
    InteractiveComplexHeatmapOutput("heatmap_2", height1 = 300, height2 = 300)
)

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht1, "heatmap_1")
    makeInteractiveComplexHeatmap(input, output, session, ht2, "heatmap_2")
}

shinyApp(ui, server)

####################################################################
# title: Self-define the output. The selected sub-matrix is shown as a text table.

library(GetoptLong)  # for the qq() function which does variable intepolation
data(rand_mat)
ht = Heatmap(rand_mat, show_row_names = FALSE, show_column_names = FALSE)
ht = draw(ht)

# We directly assign the new UI to the argument `output_ui` to replace the default output UI.
ui = fluidPage(
    InteractiveComplexHeatmapOutput(output_ui = htmlOutput("info")),
)

# We define one action for click event and one action for brush event on heatmap.
click_action = function(df, output) {
    output[["info"]] = renderUI({
        if(!is.null(df)) {
            HTML(qq("<p style='background-color:#FF8080;color:white;padding:5px;'>You have clicked on heatmap @{df$heatmap}, row @{df$row_index}, column @{df$column_index}</p>"))
        }
    })
}

suppressPackageStartupMessages(library(kableExtra))
brush_action = function(df, output) {
    row_index = unique(unlist(df$row_index))
    column_index = unique(unlist(df$column_index))
    output[["info"]] = renderUI({
        if(!is.null(df)) {
            HTML(kable_styling(kbl(rand_mat[row_index, column_index, drop = FALSE], digits = 2, format = "html"), 
                full_width = FALSE, position = "left"))
        }
    })
}

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht,
        click_action = click_action, brush_action = brush_action)
}

shinyApp(ui, server)

####################################################################
# title: Self-define the output. Additional annotations for the selected genes are shown.

library(GetoptLong)
load(system.file("extdata", "chr21_test_data.RData", package = "EnrichedHeatmap"))

gene_id = names(rpkm)[1:100]
gene_id = gsub("\\.\\d+$", "", gene_id)

suppressPackageStartupMessages(library(org.Hs.eg.db))
query = AnnotationDbi::select(org.Hs.eg.db, keys = gene_id, columns = c("SYMBOL", "REFSEQ", "UNIPROT"), keytype = "ENSEMBL")
query = split(query, query[, 1])

n = length(query)
m = matrix(rnorm(n*n), n)
rownames(m) = names(query)

ht = Heatmap(m, show_row_names = FALSE)
ht = draw(ht)

# Here the new output is independent to the default output UI.
ui = fluidPage(
    InteractiveComplexHeatmapOutput(),
    htmlOutput("gene_info")
)

# We add more annotations for the selected genes.
click_action = function(df, output) {
    output[["gene_info"]] = renderUI({
        if(!is.null(df)) {
            g = rownames(m)[df$row_index]

            to_str = function(x) paste(unique(x), collapse = ", ")
            HTML(qq(
"<pre>
Ensembl: <a href='https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=@{g}' target='_blank'>@{g}</a>
SYMBOL: @{to_str(query[[g]][, 'SYMBOL'])}
REFSEQ: @{to_str(query[[g]][, 'REFSEQ'])}
UNIPROT: @{to_str(query[[g]][, 'UNIPROT'])}
</pre>"
))
        }
    })
}

# This new brush action basicaly removes the output created by click_action
brush_action = function(df, output) {
    output[["gene_info"]] = renderUI({
        HTML("")
    })
}

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht,
        click_action = click_action, brush_action = brush_action)
}

shinyApp(ui, server)


####################################################################
# title: Visualize Gene Ontology similarities. A list of selected GO IDs as well as their descriptions are shown in the output.

library(GetoptLong)
suppressPackageStartupMessages(library(simplifyEnrichment))

mat = readRDS(system.file("extdata", "random_GO_BP_sim_mat.rds",
     package = "simplifyEnrichment"))
cl = binary_cut(mat)
ht = ht_clusters(mat, cl, word_cloud_grob_param = list(max_width = 80))

suppressPackageStartupMessages(library(GO.db))
get_go_term = function(go_id) {
    term = suppressMessages(AnnotationDbi::select(GO.db, keys = go_id, columns = "TERM")$TERM)
    term[is.na(term)] = "NA"
    term
}

ui = fluidPage(
    InteractiveComplexHeatmapOutput(width1 = 700, height1 = 450),
    htmlOutput("go_info")
)

library(GetoptLong)
click_action = function(df, output) {
    output[["go_info"]] = renderUI({
        if(!is.null(df)) {
            go_id1 = rownames(mat)[df$row_index]
            go_id2 = colnames(mat)[df$column_index]

            HTML(qq(
"<pre>
## Row GO ID
<a href='http://amigo.geneontology.org/amigo/term/@{go_id1}' target='_blank'>@{go_id1}</a>: @{get_go_term(go_id1)}

## Column GO ID:
<a href='http://amigo.geneontology.org/amigo/term/@{go_id2}' target='_blank'>@{go_id2}</a>: @{get_go_term(go_id2)}
</pre>"
))
        }
    })
}

brush_action = function(df, output) {
    output[["go_info"]] = renderUI({
        if(!is.null(df)) {
            row_index = unique(unlist(df$row_index))
            column_index = unique(unlist(df$column_index))
            go_id1 = rownames(mat)[row_index]
            go_id2 = colnames(mat)[column_index]

            go_id = union(go_id1, go_id2)

            go_text = qq("<a href='http://amigo.geneontology.org/amigo/term/@{go_id}' target='_blank'>@{go_id}</a>: @{get_go_term(go_id)}\n")
            HTML(qq(
"<pre>
@{go_text}
</pre>"
))
        }
    })
}

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht,
        click_action = click_action, brush_action = brush_action)
}

shinyApp(ui, server)

#########################################################################################################
# title: Interactive correlation heatmap. Clicking on the cell generates a scatterplot of the two corresponding variables.

data(mtcars)
cor_mat = cor(mtcars)

library(circlize)
col_fun = colorRamp2(c(-1, 0, 1), c("darkgreen", "white", "red"))
ht = Heatmap(cor_mat, name = "Correlation",
    col = col_fun, rect_gp = gpar(type = "none"),
    cell_fun = function(j, i, x, y, w, h, fill) {
        grid.rect(x, y, w, h, gp = gpar(fill = "transparent", col = "grey"))
        grid.circle(x = x, y = y, r = abs(cor_mat[i, j])/2 * min(unit.c(w, h)), 
            gp = gpar(fill = col_fun(cor_mat[i, j]), col = NA))
    },
    show_row_dend = FALSE, show_column_dend = FALSE)

ui = fluidPage(
    InteractiveComplexHeatmapOutput(response = "click", 
        output_ui = plotOutput("scatterplot", width = 400, height = 400))
)

click_action = function(df, output) {
    output$scatterplot = renderPlot({
        if(is.null(df)) {
            grid.text("You should click on heatmap cells.")
        } else {
            nm = colnames(mtcars)
            i1 = df$column_index
            i2 = df$row_index

            x = mtcars[, nm[i1]]
            y = mtcars[, nm[i2]]

            plot(x, y, xlab = nm[i1], ylab = nm[i2],
                main = paste0("Correlation = ", sprintf('%.3f', cor(x, y))))
        }
    })
}


server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht,
        click_action = click_action)
}

shinyApp(ui, server)


#############################################################################################
# title: A heatmap on Jaccard coefficients for a list of genomic regions. Clicking on the cell generates a Hilbert curve of how the two sets of genomic regions overlap.

library(GenomicRanges)
library(HilbertCurve)
library(ComplexHeatmap)
library(GetoptLong)

file_list = c(
    "IDH_DMV" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_IDH_methylation_features_DMV.bed.gz",
    "IDH_LMR" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_IDH_methylation_features_LMR.bed.gz",
    "IDH_PMD" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_IDH_methylation_features_PMD.bed.gz",

    "MES_DMV" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_MES_methylation_features_DMV.bed.gz",
    "MES_LMR" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_MES_methylation_features_LMR.bed.gz",
    "MES_PMD" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_MES_methylation_features_PMD.bed.gz",

    "RTK_I_DMV" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_I_methylation_features_DMV.bed.gz",
    "RTK_I_LMR" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_I_methylation_features_LMR.bed.gz",
    "RTK_I_PMD" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_I_methylation_features_PMD.bed.gz",

    "RTK_II_DMV" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_II_methylation_features_DMV.bed.gz",
    "RTK_II_LMR" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_II_methylation_features_LMR.bed.gz",
    "RTK_II_PMD" = "https://ftp.ncbi.nlm.nih.gov/geo/series/GSE121nnn/GSE121721/suppl/GSE121721_RTK_II_methylation_features_PMD.bed.gz"
)

gr_list = lapply(file_list, function(x) {
    tmp = tempfile()
    download.file(x, tmp)
    df = read.table(tmp)
    file.remove(tmp)
    GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3]))
})

# to get the function `genomic_regions_correlation()` that calculates Jaccard coeffcients.
source("https://raw.githubusercontent.com/jokergoo/epik/master/R/genomic_region_correlation.R")

jaccard_mat = genomic_regions_correlation(gr_list, gr_list)$stat

ht = draw(Heatmap(jaccard_mat, col = c("white", "red"), name = "Jaccard"))

make_hilbert_curve = function(i, j) {

    gr1 = gr_list[[i]]
    gr2 = gr_list[[j]]

    name1 = names(gr_list)[i]
    name2 = names(gr_list)[j]

    gr1_unique = setdiff(gr1, gr2)
    gr_common = intersect(gr1, gr2)
    gr2_unique = setdiff(gr2, gr1)

    gr = c(gr1_unique, gr_common, gr2_unique)

    l = as.vector(seqnames(gr) == "chr21")

    lgd = Legend(at = c(paste0("unique in ", name1), "in both", paste0("unique in ", name2)), legend_gp = gpar(fill = c("green", "red", "blue")))
    hc = GenomicHilbertCurve(chr = "chr21", level = 6, reference = TRUE, arrow = FALSE,
        legend = lgd, title = qq("Compare @{name1} and @{name2}, jaccard = @{sprintf('%.3f', jaccard_mat[i, j])}"))
    hc_segments(hc, gr, 
        gp = gpar(col = c(rep("green", length(gr1_unique)),
                         rep("red", length(gr_common)),
                         rep("blue", length(gr2_unique))),
                  lwd = 6))
}

ui = fluidPage(
    InteractiveComplexHeatmapOutput(response = "click", 
        width1 = 600, height1 = 600, 
        output_ui = plotOutput("hcplot", width = 700, height = 600))
    
)

click_action = function(df, output) {
    output$hcplot = renderPlot({
        if(is.null(df)) {
            grid.text("You should click on heatmap cells.")
        } else {
            i1 = df$column_index
            i2 = df$row_index
            make_hilbert_curve(i1, i2)
        }
    })
}

server = function(input, output, session) {
    makeInteractiveComplexHeatmap(input, output, session, ht,
        click_action = click_action)
}

shinyApp(ui, server)

################################################
# title: Implement interactivity from scratch. Instead of generating the whole interactive heatmap widget, it only returns the information of rows and columns that user have selected on heatmap and users can use this information to build their own interactive heatmap widgets.

library(shiny)

ui = fluidPage(
    actionButton("action", "Generate heatmap"),
    plotOutput("heatmap", width = 500, height = 500, click = "heatmap_click", 
        brush = "heatmap_brush"),
    verbatimTextOutput("output")
)

server = function(input, output, session) {

    ht_obj = reactiveVal(NULL)
    ht_pos_obj = reactiveVal(NULL)

    observeEvent(input$action, {
        m = matrix(rnorm(100), 10)
        rownames(m) = 1:10
        colnames(m) = 1:10

        output$heatmap = renderPlot({
            ht = draw(Heatmap(m))
            ht_pos = htPositionsOnDevice(ht)

            ht_obj(ht)
            ht_pos_obj(ht_pos)
        })
    })

    observeEvent(input$heatmap_click, {
        pos = getPositionFromClick(input$heatmap_click)

        selection = selectPosition(ht_obj(), pos, mark = FALSE, ht_pos = ht_pos_obj(), 
            verbose = FALSE)
        output$output = renderPrint({
            print(selection)
        })
    })

    observeEvent(input$heatmap_brush, {
        lt = getPositionFromBrush(input$heatmap_brush)

        selection = selectArea(ht_obj(), lt[[1]], lt[[2]], mark = FALSE, ht_pos = ht_pos_obj(), 
            verbose = FALSE)
        output$output = renderPrint({
            print(selection)
        })
    })
}

shinyApp(ui, server)


#######################################################################
# title: Implement interactivity from scratch. A visualization of 2D density distribution. Brushing on heatmap triggers a new 2D density estimation only on the subset of data.

library(InteractiveComplexHeatmap)
library(ComplexHeatmap)
library(RColorBrewer)
library(shiny)
library(ks)

lt = readRDS(system.file("extdata", "2d_density_xy.rds", package = "InteractiveComplexHeatmap"))
x = lt$x
y = lt$y

fit_2d_density = function(x, y) {
    data = cbind(x, y)
    kde(x = data)
}

ht_2d_density = function(fit, ...) {

    m = fit$estimate
    m = t(m)
    m = m[rev(seq_len(nrow(m))), , drop = FALSE]
    ht = Heatmap(m, name = "Density",
        col = rev(brewer.pal(11, "Spectral")),
        show_row_names = FALSE, show_column_names = FALSE, 
        cluster_rows = FALSE, cluster_columns = FALSE,
        left_annotation = rowAnnotation(yaxis = anno_empty(border = FALSE)),
        bottom_annotation = HeatmapAnnotation(xaxis = anno_empty(border = FALSE)),
        ...
    )

    ht@heatmap_param$post_fun = function(ht) {
        decorate_heatmap_body("Density", {
            pushViewport(viewport(xscale = range(fit$eval.points[[1]]),
                                  yscale = range(fit$eval.points[[2]]), 
                                  clip = FALSE))
            grid.rect(gp = gpar(fill = NA))
            grid.xaxis(gp = gpar(fontsize = 8))
            grid.yaxis(gp = gpar(fontsize = 8))
            upViewport()
        })
    }
    ht
}

ui = fluidPage(
    plotOutput("heatmap", width = 400, height = 400, brush = "heatmap_brush"),
    plotOutput("selected", width = 400, height = 400),
    tags$style(HTML("
        #heatmap, #selected {
            float:left;
            margin-top:20px;
        }
    "))
)

server = function(input, output, session) {

    ht_obj = reactiveVal(NULL)
    ht_pos_obj = reactiveVal(NULL)
    original_fit_obj = reactiveVal(NULL)

    output$heatmap = renderPlot({

        fit = fit_2d_density(x, y)
        ht = ht_2d_density(fit, column_title = "2D density of the complete dataset")
        
        ht = draw(ht)
        ht_pos = htPositionsOnDevice(ht)

        ht_obj(ht)
        ht_pos_obj(ht_pos)
        original_fit_obj(fit)
    })

    observeEvent(input$heatmap_brush, {
        lt = getPositionFromBrush(input$heatmap_brush)

        selection = selectArea(ht_obj(), lt[[1]], lt[[2]], mark = FALSE, ht_pos = ht_pos_obj(), 
            verbose = FALSE)
        
        original_fit = original_fit_obj()
        xrange = range(original_fit$eval.points[[1]][unlist(selection$column_index)])
        yrange = range(rev(original_fit$eval.points[[2]])[unlist(selection$row_index)])
        
        l = x >= xrange[1] & x <= xrange[2] & y >= yrange[1] & y <= yrange[2]

        output$selected = renderPlot({
            if(sum(l) <= 2) {
                grid.newpage()
                grid.text("No enough data points.")
            } else {
                fit = fit_2d_density(x[l], y[l])
                ht = ht_2d_density(fit, column_title = "2D density of the selected subset")
                draw(ht)
            }
        })
    })
}

shinyApp(ui, server)
jokergoo/InteractiveComplexHeatmap documentation built on Feb. 28, 2024, 7:34 p.m.