### =========================================================================
### keys() and keytype() - related functions for gene-centric Dbs
### -------------------------------------------------------------------------
## Three helpers for deprecating keytypes
## One to just list the bum keytypes
.listDeprecatedKeytypes <- function(){
c('CHR','CHRLOC','CHRLOCEND') ## Uncomment after the release
}
## Another for keytypes to remove unwanted keytypes
.filterDeprecatedKeytypes <- function(keytypes){
keytypes[!(keytypes %in% .listDeprecatedKeytypes())]
}
## this is a 'standard' warning for people who try to use keys or cols
## that are no longer valid due to being deprecated
.deprecatedColsMessage <- function(){
depCols <- paste(.listDeprecatedKeytypes(), collapse="','")
warning(wmsg(paste0("Accessing gene location information via '",
depCols,"' is deprecated. Please use a range ",
"based accessor like genes(), or select() with ",
"columns values like TXCHROM and TXSTART ",
"on a TxDb or OrganismDb object instead.\n")))
}
## And one for keys and select to warn if the user tries to use them
.checkForDeprecatedKeytype <- function(keytype){
if(any(.listDeprecatedKeytypes() %in% keytype )){
.deprecatedColsMessage()
}
}
## Need an accessor for getting the central ID for a DB (when appropriate)
.getCentralID <- function(x){
as.character(dbQuery(dbconn(x),
"SELECT value FROM metadata WHERE name='CENTRALID'"))
}
## Sometimes we need to translate a centralID into a central keytype.
chooseCentralOrgPkgSymbol <- function(x){
centralID <- .getCentralID(x)
keytype <- switch(EXPR = centralID,
"EG" = "ENTREZID",
"TAIR" = "TAIR",
"ORF" = "ORF",
"GID" = "GID")
keytype
}
## keys methods return the possible primary keys. So for EG based packages,
## this will be the viable entrez gene IDs.
## Must use SELECT DISTINCT for now because some packages like ag.db
## (Arabidopsis) have repeated probe ids in the probes table (those are the
## probe ids that hit multiple genes).
## TODO: When 'x' has the new slot containing the package name, use
## dbUniqueVals() (defined in SQL.R) and pass pkgname:::datacache to it.
## dbUniqueVals() is what's used behind the scene by the Lkeys/Rkeys/keys
## methods for AnnDbBimap objects so the "keys" methods below will give a
## consistent answer (and will take advantage of the cache).
## helper to get keys
.queryForKeys <- function(x, keytype){
if(class(x)=="ChipDb"){
x <- .getOrgPkg(x)
}
table <- .getDBLocs(x, keytype)
field <- .getDBLocs(x, keytype, value="field")
sql <- paste("SELECT DISTINCT",field,"FROM",table)
res <- dbQuery(dbconn(x), sql)
t(res)
}
.legacyKeys <- function(x, keytype){
## have to swap keytype
## keytype <- .swapSymbolExceptions(x, keytype)
keytype <- .simplifyCols(x, keytype)
## Some org packages may have entrez genes in weird places...
centralID <- .getCentralID(x)
EGgeneTable <- character()
if(centralID == "EG" || centralID == "ORF"){
EGgeneTable <- "genes"
}else if(centralID == "TAIR"){
EGgeneTable <- "entrez_genes"
}
## now decide
if(class(x) == "OrgDb" && species(x) != "Plasmodium falciparum"){
res <- switch(EXPR = keytype,
"ENTREZID" = dbQuery(dbconn(x),
paste("SELECT gene_id FROM", EGgeneTable), 1L),
"TAIR" = dbQuery(dbconn(x),
"SELECT gene_id FROM genes", 1L),
"ORF" = dbQuery(dbconn(x),
"SELECT systematic_name FROM sgd", 1L),
"PROBEID" =
stop("PROBEID is not supported for Organism packages"),
.queryForKeys(x, keytype))
}
if(class(x) == "OrgDb" && species(x) == "Plasmodium falciparum"){
res <- switch(EXPR = keytype,
"ORF" = dbQuery(dbconn(x),
paste("SELECT gene_id FROM", EGgeneTable), 1L),
.queryForKeys(x, keytype))
}
if(class(x) == "ChipDb"){
res <- switch(EXPR = keytype,
"ENTREZID" = dbQuery(dbconn(x),
"SELECT gene_id FROM probes", 1L),
"PROBEID" = dbQuery(dbconn(x),
"SELECT DISTINCT probe_id FROM probes", 1L),
.queryForKeys(x, keytype))
}
if(class(x) == "GODb"){
res <- switch(EXPR = keytype,
"GOID" = dbQuery(dbconn(x),
"SELECT DISTINCT go_id FROM go_term", 1L),
.queryForKeys(x, keytype))
}
as.character(res[!is.na(res)])
}
## special functions for newer NOSCHEMA_DB's
.deriveTableNameFromField <- function(field, x){
if(class(x)=="ChipDb"){
y <- x ## Switcheroo
x <- .getOrgPkg(x)
try(.attachDB(x,y), silent=TRUE) ## not a disaster if we fail
}
con <- dbconn(x)
tables <- .getDataTables(con)
if(exists("y", inherits=FALSE)){
tables <- c("c.probes", tables)
}
colTabs <- sapply(tables, FUN=dbListFields, con=con, simplify = FALSE)
colTabs <- colTabs[grep("go_[mcb].+", names(colTabs), invert = TRUE)]
m <- unlist2(sapply(colTabs, match, field, simplify = FALSE)) ## cannot ever be repeated
tab <- names(m)[!is.na(m)]
if(length(tab)!=1){stop("Two fields in the source DB have the same name.")}
tab
}
.noSchemaKeys <- function(x, keytype){
tab <- .deriveTableNameFromField(field=keytype, x)
## So now we know table name (tab) and field (keytype)
if(class(x)=="ChipDb"){
y <- x ## Switcheroo
x <- .getOrgPkg(x)
try(.attachDB(x,y), silent=TRUE) ## not a disaster if we fail
}
sql <- paste("SELECT",keytype,"FROM",tab)
res <- dbQuery(dbconn(x), sql, 1L)
as.character(res[!is.na(res)])
}
## general keys function
.keys <- function(x, keytype){
.checkForDeprecatedKeytype(keytype)
testForValidKeytype(x, keytype)
schema <- metadata(x)[metadata(x)$name=="DBSCHEMA",]$value
if(schema=="NOSCHEMA_DB" || schema=="NOCHIPSCHEMA_DB"){
.noSchemaKeys(x, keytype)
}else{
.legacyKeys(x, keytype)
}
}
####################################################################
## So the new idea is that each place where I want to "enhance" keys,
## I should just be able to use a helper to wrap up the actual keys
## method...
## And we need a master helper to tie it all together
smartKeys <-
function(x, keytype, ..., pattern, column, fuzzy=FALSE, FUN)
{
## check args, then...
## FUN is the base keys method
.keys <- FUN
## So 1st we need helpers for other "keys" situations
## keys0 is for when we have a pattern we want to match in the keys
.keys0 <- function(x, keytype, ..., pattern, fuzzy=FALSE)
{ ## assumes 'pattern' present
FUN <- if (fuzzy) agrep else grep
FUN(pattern, .keys(x, keytype), value=TRUE, ...)
}
## keys1 is for when we have a column but no pattern
## so we want to filter by column
.keys1 <- function(x, keytype, ..., column)
{ ## column acts as filter
k <- suppressWarnings(select(x, as.character(.keys(x, keytype)),
column, keytype))
k[[keytype]][ !is.na(k[[column]]) ]
}
## keys2 is for when we have a column, and a pattern to match on that
## column, and we want all the keys of a particular keytype that match
## that column.
.keys2 <- function(x, keytype, ..., pattern, column, fuzzy=FALSE)
{ ## assumes 'pattern', 'column' present
FUN <- if (fuzzy) agrep else grep
k <- suppressWarnings(select(x, as.character(.keys(x, keytype)),
column, keytype))
k[[keytype]][ FUN(pattern, k[[column]], ...) ]
}
## Now decide which function to call...
if (missing(pattern) && missing(column))
k <- .keys(x, keytype)
else if (missing(column))
k <- .keys0(x, keytype, ..., pattern=pattern, fuzzy=fuzzy)
else if (missing(pattern))
k <- .keys1(x, keytype, ..., column=column)
else
k <- .keys2(x, keytype, ..., pattern=pattern, column=column,
fuzzy=fuzzy)
unique(k)
}
## TODO: don't fail to document all the new arguments (pattern, column and fuzzy)
setMethod("keys", "OrgDb",
function(x, keytype, ...){
if(missing(keytype)){
keytype <- chooseCentralOrgPkgSymbol(x)
}
smartKeys(x=x, keytype=keytype, ..., FUN=.keys)
}
)
setMethod("keys", "ChipDb",
function(x, keytype, ...){
if(missing(keytype)) keytype <- "PROBEID"
smartKeys(x=x, keytype=keytype, ..., FUN=.keys)
}
)
setMethod("keys", "GODb",
function(x, keytype, ...){
if(missing(keytype)) keytype <- "GOID"
smartKeys(x=x, keytype=keytype, ..., FUN=.keys)
}
)
setMethod("keys", "OrthologyDb",
function(x, keytype, ...)
.ontoKeys(x, keytype, ...)
)
## new uses for keys:
## now TERM is a real key? (TODO: someone tell the keytypes)
## head(keys(GO.db, keytype="TERM"))
## get TERM keys that match a particular pattern
## head(keys(GO.db, keytype="TERM", pattern="mitochondrion"))
## get GOIDs where a TERM exists.
## head(keys(GO.db, keytype="GOID", column="TERM"))
## get keys of type GOID that go with a pattern match in TERM
## head(keys(GO.db, keytype="GOID", pattern="mitochondrion", column="TERM"))
## select(GO.db, keys =head(keys(GO.db, keytype="GOID", pattern="mitochondrion", column="TERM")), cols=c("GOID","TERM"))
## do the above but use fuzzy matching
## head(keys(GO.db, keytype="GOID", pattern="mitochondrion", column="TERM", fuzzy=TRUE))
## select(GO.db, keys = head(keys(GO.db, keytype="GOID", pattern="mitochondrion", column="TERM", fuzzy=TRUE)), cols=c("GOID","TERM"))
## Can just get keys (straight up)
## head(keys(org.Hs.eg.db, keytype="SYMBOL"))
## keys1 situation works fine (and smartKeys is called twice.)
## Can filter by column (only return keys where there is a value for "PATH"
## length(keys(org.Hs.eg.db, keytype="ENTREZID", column="PATH"))
## is shorter than:
## length(keys(org.Hs.eg.db, keytype="ENTREZID"))
## debug(AnnotationDbi:::smartKeys)
## Can just get keys that match a pattern
## keys(org.Hs.eg.db, keytype="SYMBOL", pattern="BRCA")
## Can get a key that matches a pattern on some other column
## head(keys(org.Hs.eg.db,keytype="ENTREZID",pattern="MSX",column="SYMBOL"))
## keytypes method is to allow the user to specify what kind of keytype is
## passed in to either keys or the select methods.
## temporarily:this method will be VERY unsophisticated.
## TODO: would like to find a way to restore these blacklisted types to being
## able to be used, but I need a way around the lack of an Rkeys() method etc.
## keytypesBlackList <- c("CHRLOCEND","CHRLOC","PFAM","PROSITE",
## "DESCRIPTION", "GENENAME")
## .filterKeytypes <- function(x, baseType, keytypesBlackList){
## res <- .cols(x, baseType=baseType)
## res <- res[!res %in% keytypesBlackList]
## ## append the centralID (if not already present)
## centralID <- .getCentralID(x)
## if(centralID == "EG"){ centralID <- "ENTREZID" }
## res <- c(res, centralID)
## unique(res)
## }
setMethod("keytypes", "OrgDb",
## function(x) .filterKeytypes(x, baseType="ENTREZID", keytypesBlackList)
function(x){
kts <- .cols(x, baseType="ENTREZID")
.filterDeprecatedKeytypes(kts)
}
)
setMethod("keytypes", "ChipDb",
## function(x) .filterKeytypes(x, baseType="PROBEID", keytypesBlackList)
function(x){
kts <- .cols(x, baseType="ENTREZID")
.filterDeprecatedKeytypes(kts)
}
)
setMethod("keytypes", "GODb",
function(x) return(c("GOID","TERM","ONTOLOGY","DEFINITION")) ## only one type makes sense
)
setMethod("keytypes", "OrthologyDb",
function(x)
.justFirstUpper(dbGetQuery(dbconn(x), "select name from names;")[,1])
)
## Marc's TODO:
##X .5) make keytype so that it uses the mapping names instead of internal stuff
##X 1) make keytypes so that it returns all possible keytypes
##X 2) make keys() so that it gets correct keys for correct keytypes
##X 3) make select() so that it is more efficient (pre-filter)
##X 4) make select() so that it uses keytypes to initially map in to the correct thing and then call internal funcs.
## 4.5) Make sure this thing is sorting correctly!
## 5) document all this stuff.
#############################
## TEST CODE:
## library(org.Hs.eg.db)
## ls(2)
## con = AnnotationDbi:::dbconn(org.Hs.eg.db)
## keys = head(keys(org.Hs.egCHR))
## debug(AnnotationDbi:::.queryForKeys)
## debug(AnnotationDbi:::.keys)
## example of keys that uses keytype
## keys = keys(org.Hs.eg.db, keytype="ALIAS2EG")[1:4]
## example of keys that does not use keytype
## keys = keys(org.Hs.eg.db)[1:5]
## default keytype example
## keys = keys(org.Hs.eg.db)[1:5]
## cols = c("SYMBOL", "UNIPROT")
## select(org.Hs.eg.db, keys, cols)
## idType = "gene_id"
## debug(AnnotationDbi:::resort_base)
## debug(AnnotationDbi:::.mergeBimaps)
## debug(AnnotationDbi:::.select)
#############################
## keytype example
## library(hgu95av2.db); columns(hgu95av2.db); columns(org.Hs.eg.db); head(keys(org.Hs.eg.db, "ALIAS")); keys(org.Hs.eg.db, keytype="PROBEID")## should be an error
## library(org.Hs.eg.db); keys2 = head(keys(org.Hs.eg.db, "ALIAS"));cols = c("SYMBOL", "GO");res <- select(org.Hs.eg.db, keys2, cols, keytype="ALIAS"); head(res); dim(res)
## debug(AnnotationDbi:::.select)
## library(hgu95av2.db); keys2 = head(keys(hgu95av2.db, "ALIAS"));cols = c("SYMBOL", "GO");res <- select(hgu95av2.db, keys2, cols, keytype="ALIAS"); head(res); dim(res)
## works now
## library(org.Hs.eg.db);keys2 = head(Rkeys(org.Hs.egALIAS2EG));cols = c("SYMBOL","ENTREZID", "GO");res <- select(org.Hs.eg.db, keys2, cols, keytype="ALIAS")
## works now
## keys = head(keys(org.Hs.eg.db)); cols = c("SYMBOL","ENTREZID", "GO");res <- select(org.Hs.eg.db, keys, cols, keytype="ENTREZID")
## also works now
## library(hgu95av2.db); keys = head(keys(hgu95av2.db)); cols = c("SYMBOL","ENTREZID", "GO", "PROBEID"); res <- select(hgu95av2.db, keys, cols, keytype="PROBEID"); head(res)
## This shouldn't work - wrong keytype):
## keys = head(keys(hgu95av2.db)); cols = c("SYMBOL","ENTREZID", "GO"); res <- select(hgu95av2.db, keys, cols, keytype="ENTREZID")
## This does work (and should):
## library(hgu95av2.db); keys = head(keys(hgu95av2.db)); cols = c("SYMBOL","ENTREZID", "GO"); res <- select(hgu95av2.db, keys, cols, keytype="PROBEID"); head(res)
## library(GO.db); select(GO.db, keys(GO.db)[1:4], c("TERM","SYNONYM"))
## library(hgu95av2.db); okeys = keys(hgu95av2.db,keytype="OMIM")[1:4]; cols = c("SYMBOL", "UNIPROT", "PATH"); select(hgu95av2.db, okeys, cols, keytype="OMIM")
## TODO Bugs/refinements:
## TODO: this one should produce an output... - FIXED
## keys = head(keys(hgu95av2.db, "ENTREZID")); cols = c("PROBEID","SYMBOL","ENTREZID", "GO"); res <- select(hgu95av2.db, keys, cols, keytype="ENTREZID"); head(res)
## 3) Add a NEWS page with info. about these changes.
## strange bug: - killed
## 4) Putting "ENTREZID" in for keytype and then giving probe IDs as keys should NOT work for hgu95av2.db: but it does... (it only seems to allow this with the one kind of key)
## also need to roll back the removal of the keytype from the columns.
## library(org.Hs.eg.db);keys2 = head(Rkeys(org.Hs.egALIAS2EG));cols = c("SYMBOL","ENTREZID", "GO");res <- select(org.Hs.eg.db, keys2, cols, keytype="ALIAS");
## Strange bug:
## the following all work:
## foo = select(org.Hs.eg.db, keys=head(keys(org.Hs.eg.db),n=2),cols="REFSEQ"); head(foo)
## foo = select(org.Hs.eg.db, keys=head(keys(org.Hs.eg.db),n=2),cols=c("REFSEQ","ACCNUM")); head(foo)
## foo = select(org.Hs.eg.db, keys=head(keys(org.Hs.eg.db),n=2),cols=c("ACCNUM")); head(foo)
## But this does NOT work (fixed):
## foo = select(org.Hs.eg.db, keys=head(keys(org.Hs.eg.db),n=2),cols=head(columns(org.Hs.eg.db))); head(foo); head(columns(org.Hs.eg.db))
## debug(AnnotationDbi:::.nameExceptions)
## debug(AnnotationDbi:::.addNAsInPlace)
## Requirements for having a select method that works and plays well with
## others:
## 1) Use the same arguments for the method (obvious)
## 2) remove dulicated columns.
## Martins slow select example. It takes advantage of the fact that for
## simple cases, like the one below, our select method has to gather each
## piece and then merge them together which costs a lot of time (both to merge
## and also because we don't pre-subset).
## Also our code is doing more post-processing (returning prettier results in
## particular order etc.)
## Also because our code is blind to what the user wants out, we move ALL of
## each bimap through memory and don't pare them down till we merge them
## together and this is ultimately inefficient.
## If the code knew (as Martin did in this case) the relationships between
## these different elements (perhaps it could learn that graph from the DB),
## then it could make smarter decisions about how to query.
## library(org.Hs.eg.db)
## sym <- "ITGA7"
## system.time(res0 <- toTable(org.Hs.egPFAM[ org.Hs.egALIAS2EG[[sym]] ]))
## system.time(res1 <- select(org.Hs.eg.db, sym, "PFAM", "ALIAS"))
## system.time(res3 <- toTable(org.Hs.egGO[ org.Hs.egALIAS2EG[[sym]] ]))
## system.time(res4 <- select(org.Hs.eg.db, sym, "GO", "ALIAS"))
## ALSO: there is something to be said for the notion that we need a general
## solution to this problem that does NOT involve a Bimap. Bimaps are nice,
## but we don't normally have them for a new resource and we might want a
## faster way to handle these sorts of manipulations when we don't have them.
## Basically, I think that I want to use a graph here, but not require one
## from the user, I need to 1) be able to infer the graph from SQL, 2) be able
## to path-find through the graph such that all the keys requested are
## hit. and 3) be able to construct a sensible query from that graph. Tall
## order, but a fun problem.
## Reasons for generalizing this: 1) I need to be able to do this in ALL
## databases (not just bimap ones). and 2) We are moving away from bimaps and
## 3) I want to be able to add mappings to existing bimap based data resources
## that are actually not available as a bimap (reactome) and 4) I would really
## like to be able to transparently pull data from another resource and just
## have it appear to be in one place. Sort of like we currently do for
## microRNAs with TxDbs
## Really radical thoughts:
## What if discovery functions just reported based on which databases were
## installed (instead of just what was in a package?).
## What if select searched across all of these databases to make joins on the
## fly as appropriate by already knowing how to connect the dots?
## What if we could have select work out how things connect based on the type
## of package, and some internal information about how those would be joined?
## THE R CMD build bug:
## For AnnotationDbi:
## R --vanilla
## utils::Sweave("IntroToAnnotationPackages.Rnw") ## runs no problem
## BUT:
## R --vanilla
## utils::Sweave("AnnotationDbi.Rnw")
## utils::Sweave("IntroToAnnotationPackages.Rnw") ## FAILBOAT
## This failure is happening because the values that are left littered in the
## global namespace are allowed to leak down into the scope of the functions
## being called...
## Bug was able to happen this way:
## y = "foo"
## source("AnnotationDbi/inst/doc/IntroToAnnotationPackages.R")
## was caused by overly grabby exists() calls combined with the sloppy way
## that R CMD check leaves variables all over the place when it runs R CMD
## check. exists() calls are no longer grabby.
## ALSO, lexical scoping meant that the exists() call being falsely tripped
## led to a call of species(y) actually being executed when I should never
## have been
## fieldNames <- c("gene_id","accession","accession")
## expectedCols <- c("ENTREZID","ACCNUM","REFSEQ")
## type <-
## the na bug
## sym <- "ITGA7"
## select(org.Hs.eg.db,sym,"PFAM",keytype="ALIAS");
## Problem: our code that filters rows needs to drop the keytype column before filtering NAs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.