plot_dim | R Documentation |
Embedding plots of single cells/bulk tissues after co-clustering
plot_dim(
sce,
dim = NULL,
color.by,
group.sel = NULL,
row.sel = NULL,
cocluster.only = TRUE,
x.break = NULL,
y.break = NULL,
panel.grid = FALSE,
lgd.title.size = 13,
lgd.key.size = 0.03,
lgd.text.size = 12,
point.size = 3,
bulk.size = 5,
alpha = 0.7,
stroke = 0.2,
bulk.stroke = 1,
axis.text.size = 10,
axis.title.size = 11,
lgd.pos = "right",
lgd.ncol = 1,
lgd.l = 0,
lgd.r = 0.01
)
sce |
A |
dim |
One of |
color.by |
One of the column names in the |
group.sel |
An entry in the |
row.sel |
A numeric vector of row numbers in the |
cocluster.only |
Logical, only applicable when |
x.break , y.break |
Two numeric vectors for x, y axis breaks respectively. E.g. |
panel.grid |
Logical. If |
lgd.title.size , lgd.key.size , lgd.text.size |
The size of legend plot title, legend key, legend text respectively. |
point.size , bulk.size |
The size of cells and bulk tissues respectively. |
alpha |
The transparency of cells and bulk tissues. The default is 0.6. |
stroke , bulk.stroke |
The line width of cells and bulk tissues respectively. |
axis.text.size , axis.title.size |
The size of axis text and title respectively. |
lgd.pos |
The legend position, one of |
lgd.ncol |
The number of legend columns. |
lgd.l , lgd.r |
The left and right margins of legends. |
An object of ggplot.
Jianhai Zhang jzhan067@ucr.edu
Dr. Thomas Girke thomas.girke@ucr.edu
Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. Morgan M, Obenchain V, Hester J, Pagès H (2021). SummarizedExperiment: SummarizedExperiment container. R package version 1.24.0, https://bioconductor.org/packages/SummarizedExperiment. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). “Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R.” Bioinformatics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777.
library(scran); library(scuttle)
sce <- mockSCE(); sce <- logNormCounts(sce)
# Modelling the variance.
var.stats <- modelGeneVar(sce)
sce <- denoisePCA(sce, technical=var.stats, subset.row=rownames(var.stats))
plot_dim(sce, dim='PCA', color.by='Cell_Cycle')
# See function "coclus_meta" by running "?coclus_meta".
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.