norm_cell | R Documentation |
A meta function for normalizing single-cell RNA-seq data.
norm_cell(
sce,
bulk = NULL,
cpm = FALSE,
count.kp = FALSE,
quick.clus = list(min.size = 100, d = NULL),
com.sum.fct = list(max.cluster.size = 3000, min.mean = 1),
log.norm = list(),
com = FALSE,
wk.dir = NULL
)
sce |
Single cell count data in form of |
bulk |
Bulk tissue count data in form of |
cpm |
Logical. If |
count.kp |
Logical. If |
quick.clus |
Arguments in a named list passed to |
com.sum.fct |
Arguments in a named list passed to |
log.norm |
Arguments in a named list passed to |
com |
Logical, if |
wk.dir |
The directory path to save normalized data. |
A SingleCellExperiment
object.
Jianhai Zhang jzhan067@ucr.edu
Dr. Thomas Girke thomas.girke@ucr.edu
Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). “Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R.” Bioinformatics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777. Morgan M, Obenchain V, Hester J, Pagès H (2022). SummarizedExperiment: SummarizedExperiment container. R package version 1.26.1, https://bioconductor.org/packages/SummarizedExperiment
library(scran); library(scuttle); library(SummarizedExperiment)
sce <- mockSCE()
sce.qc <- qc_cell(sce, qc.metric=list(subsets=list(Mt=rowData(sce)$featureType=='mito'), threshold=1))
sce.norm <- norm_cell(sce.qc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.