Description Usage Arguments Value Author(s) Examples
View source: R/fit_cyclic_one.R
Estimate Cyclic Trends in Gene Expression Levels Using B-splines
1 | fit_bspline(yy, time)
|
yy |
A vector of gene expression values for one gene. The expression values are assumed to have been normalized and transformed to standard normal distribution. |
time |
A vector of angles (cell cycle phase). |
A list with two elements: pred.yy
, the estimated
cyclic trend; pve
, proportion of variance in gene expression
levels explained by the cyclic trend.
Joyce Hsiao
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | library(SingleCellExperiment)
data(sce_top101genes)
# Select top 10 cyclic genes.
sce_top10 <- sce_top101genes[order(rowData(sce_top101genes)$pve_fucci,
decreasing=TRUE)[1:10],]
coldata <- colData(sce_top10)
# Get ccell cycle phase based on FUCCI scores.
theta <- coldata$theta
names(theta) <- rownames(coldata)
# Normalize expression counts.
sce_top10 <- data_transform_quantile(sce_top10, ncores=2)
exprs_quant <- assay(sce_top10, "cpm_quantNormed")
# Order FUCCI phase and expression.
theta_ordered <- theta[order(theta)]
yy_ordered <- exprs_quant[1, names(theta_ordered)]
fit <- fit_trendfilter(yy_ordered)
plot(x=theta_ordered, y=yy_ordered, pch=16, cex=0.7, axes=FALSE,
ylab="quantile-normalized expression values", xlab="FUCCI phase",
main = "trendfilter fit")
points(x=theta_ordered, y=fit$trend.yy, col="orangered", pch=16, cex=0.7)
axis(2)
axis(1,at=seq(0,2*pi,pi/2),
labels=c(0,expression(pi/2), expression(pi), expression(3*pi/2),
expression(2*pi)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.