View source: R/filter_pair_motifs.R
filter_pair_motifs | R Documentation |
Multiple hypothesis correction applied to filter for significant motif interactions.
filter_pair_motifs(interaction_data, method = "fdr", threshold = 0.05)
interaction_data |
an interactionData object of paired genomic regions |
method |
statistical method for multiple hypothesis correction,
defaults to Benjamini-Hochberg ( |
threshold |
p-value threshold for significance cut-off |
an interactionData object where obj$pair_motif_enrich
contains
multiple hypothesis corrected p-values for significance of seeing a
higher co-occurrence than what we get by chance and
obj$pair_motif_enrich_sig
contains only motifs that have at least one
significant interaction.
Jennifer Hammelman
## Not run:
genome_id <- "BSgenome.Mmusculus.UCSC.mm9"
if (!(genome_id %in% rownames(utils::installed.packages()))) {
BiocManager::install(genome_id, update = FALSE, ask = FALSE)
}
genome <- BSgenome::getBSgenome(genome_id)
motifs_file <- system.file("extdata/motifs_subset.txt.gz",
package = "spatzie")
motifs <- TFBSTools::readJASPARMatrix(motifs_file, matrixClass = "PFM")
yy1_pd_interaction <- scan_motifs(spatzie::interactions_yy1, motifs, genome)
yy1_pd_interaction <- filter_motifs(yy1_pd_interaction, 0.4)
yy1_pd_score_corr <- anchor_pair_enrich(yy1_pd_interaction, method = "score")
yy1_pd_score_corr_adj <- filter_pair_motifs(yy1_pd_score_corr)
## End(Not run)
res <- filter_pair_motifs(spatzie::anchor_pair_example_count,
threshold = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.