setClass("mlogit", representation(
coefficients = "matrix",
standard.err = "matrix",
fitted.values = "matrix",
x = "matrix",
y = "matrix",
formula = "formula",
call = "call",
df.null = "numeric",
df.residual = "numeric",
null.deviance = "numeric",
deviance = "numeric",
iter = "numeric",
converged = "logical"
)
)
setMethod("show", "mlogit", function(object) {
cat("\n")
cat(paste("Call:", deparse(object@call), "\n"))
cat("\n")
cat("Coefficients:\n")
print(t(object@coefficients))
cat("\n")
cat(paste("Degrees of Freedom:", object@df.null, "Total (i.e. Null); ", object@df.residual, "Residual\n"))
cat(paste("Null deviance: ", round(object@null.deviance,2), "\n"))
cat(paste("Residual deviance:", round(object@deviance,2), "\t"))
g <- ncol(object@y)
nullnulldf <- object@df.null + (g-1)
AIC <- object@deviance + 2 * (nullnulldf - object@df.residual)
cat(paste("AIC:", round(AIC,2) , "\n"))
})
setMethod("summary", "mlogit", function(object,...) {
cat("\n")
cat("Call:\n")
cat(paste(deparse(object@call), "\n"))
cat("\n")
devres <- sqrt(-2 * (log(object@fitted.values)))
devres[object@y==0] <- sqrt(-2 * (log(1-object@fitted.values)))[object@y==0]
devres <- sign(object@y - object@fitted.values) * devres
sumdevres <- t(round(apply(devres,2,quantile),4))
colnames(sumdevres) <- c("Min", "1Q", "Median", "3Q", "Max")
cat("Deviance Residuals:\n")
show(sumdevres)
cat("\n")
cat("Coefficients:\n")
g <- ncol(object@y)
p <- ncol(object@x)
for (ix in 1:g) {
cat(paste("\nOutcome category ",colnames(object@coefficients)[ix], ":\n", sep = ""))
coef <- object@coefficients[,ix]
sterr <- object@standard.err[,ix]
z <- coef / sterr
p <- 2*pnorm(-abs(z))
sumcoef <- cbind(coef, sterr, z, p)
colnames(sumcoef) <- c("Estimate", "Std.Error", "z-value", "Pr(>|z|)")
print(round(sumcoef, 4))
}
cat("\n")
cat(paste("Null deviance: ", round(object@null.deviance,3), "on", object@df.null, "degrees of freedom\n"))
cat(paste("Residual deviance:", round(object@deviance,3), "on", object@df.residual, "degrees of freedom\n"))
nullnulldf <- object@df.null + (g-1)
AIC <- object@deviance + 2 * (nullnulldf - object@df.residual)
cat(paste("AIC:", round(AIC,3) , "\n"))
cat("\n")
cat(paste("Number of Fisher Scoring iterations:", object@iter, "\n"))
})
setMethod("coefficients", "mlogit", function(object,...) {
object@coefficients
})
setMethod("fitted.values", "mlogit", function(object,...) {
object@fitted.values
})
setMethod("residuals", "mlogit", function(object,...) {
object@y - object@fitted.values
})
mlogit <- function(formula, data, control = glm.control())
{
# extract X from formula and data
if (!is(formula, "formula")) stop("formula should be a formula object")
if (!missing(data) && !is.data.frame(data)) stop("data should be a data.frame")
# extract Y from formula and data
if (missing(data))
data <- NULL
Y <- factor(eval(formula[[2]], data, environment(formula)))
n <- length(Y)
outs <- levels(Y)
g <- length(outs)
matrixY <- sapply(outs, function(out) { Y == out }) + 0
X <- model.matrix(formula, data=data)
p <- ncol(X)
# fit parameters
# 1: starting values:
gamma <- matrix(0,p,g)
iter <- 0
olddev <- -Inf
finished <- FALSE
# 2: Newton-Rhaphson algorithm
while (!finished) {
numerator <- sapply(1:g, function(out) exp(X %*% gamma[,out]))
denominator <- rowSums(numerator)
mu <- numerator / (denominator %o% rep(1,g))
weightedX <- lapply(as.list(1:g), function(out) X * (mu[,out] %o% rep(1,p)))
XWX <- matrix(0,p*g,p*g)
for (ix in 1:g) {
for (iy in 1:g) {
if (ix == iy) {
XWX[((ix-1)*p+1):(ix*p), ((ix-1)*p+1):(ix*p)] <- crossprod(weightedX[[ix]], X) - crossprod(weightedX[[ix]])
} else {
XWX[((ix-1)*p+1):(ix*p), ((iy-1)*p+1):(iy*p)] <- - crossprod(weightedX[[ix]], weightedX[[iy]])
}
}
}
eigs <- eigen(XWX, symmetric = TRUE)
weightedEigens <- eigs$vectors[,1:(p*(g-1))] * (rep(1,p*g) %o% sqrt(1/eigs$values[1:(p*(g-1))]))
XWX.MP <- crossprod(t(weightedEigens))
gamma <- gamma + matrix(XWX.MP %*% as.vector(crossprod(X, matrixY - mu)), p, g)
iter <- iter + 1
dev <- -2 * sum(log(mu)[matrixY==1])
finished <- ( abs(dev - olddev) / (abs(dev) + 0.1) < control$epsilon ) | (iter >= control$maxit)
olddev <- dev
}
if (iter == control$maxit) { warning("algorithm had not converged after ", control$maxit, " iterations") }
# 3: Calculate mu based on final estimates
numerator <- sapply(1:g, function(out) exp(X %*% gamma[,out]))
denominator <- rowSums(numerator)
mu <- numerator / (denominator %o% rep(1,g))
# Prepare output
probs <- mu
rownames(probs) <- names(Y)
colnames(probs) <- outs
coefs <- gamma
rownames(coefs) <- colnames(X)
colnames(coefs) <- outs
call <- sys.call(0)
nullmu <- rep(1,n) %o% colMeans(matrixY)
nulldev <- -2 * sum(log(nullmu) * matrixY)
fit <- new("mlogit",
coefficients = coefs,
standard.err = matrix(sqrt(diag(XWX.MP)),p,g),
x = X,
y = matrixY,
fitted.values = probs,
call = call,
formula = formula,
df.null = (n-1) * (g-1),
df.residual = (n-p) * (g-1),
null.deviance = nulldev,
deviance = dev,
iter = iter,
converged = (iter < control$maxit)
)
fit
}
.EQall <- function(X, IminH, fit) {
mu <- fitted.values(fit)
n <- nrow(mu)
g <- ncol(mu)
m <- nrow(X)
range <- lapply(as.list(1:g), function(ix) ((ix-1)*n+1):(ix*n))
matrixW <- matrix(0,g,n*g)
for (ix in 1:g)
matrixW[,range[[ix]]] <- -t(mu)
matrixW <- matrixW * (rep(1,g) %o% as.vector(mu))
for (ix in 1:g)
matrixW[ix,range[[ix]]] <- matrixW[ix,range[[ix]]] + mu[,ix]
XX <- crossprod(X) / m
R <- matrix(0,n*g,n*g)
for (ix in 1:g) {
for(iy in 1:g) {
R[range[[ix]],range[[iy]]] <- crossprod(IminH[range[[ix]],range[[iy]]], XX) %*%
IminH[range[[ix]],range[[iy]]]
}
}
RW <- matrix(0,n*g,n*g)
for (ix in 1:g) {
for (iy in 1:g) {
M <- matrix(0, n, n)
for (iz in 1:g) {
M <- M + R[range[[ix]], range[[iz]]] * (matrixW[iz, range[[iy]]] %o% rep(1,n))
}
RW[range[[ix]], range[[iy]]] <- M
}
}
sum(diag(RW))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.