gtPS <- function(response, null, data, model = c("linear", "logistic", "cox", "poisson", "multinomial"), ...,
covs, bdeg = 3, nint= 10, pord = 2, interact = FALSE, robust = FALSE,
termlabels = FALSE, returnZ = FALSE) {
# store the call
call <- match.call()
# missing data
if (missing(data)) data<-NULL
if (is.matrix(data)) data <- as.data.frame(data)
# evaluate response, which may be one of the colnames of data
response <- eval(call$response, data, parent.frame())
# response model
if (is(response,"lm") || is(response,"glm") || is(response,"coxph")) {
data <- eval(response$call$data)
if (is.null(data)) stop("argument \"data\" in the null model is missing")
else data<-as.data.frame(data)
response<-as.formula(response$call$formula)
}
# settle formula null and vector response if response is a formula
if (missing(null))
if (is(response, "formula"))
null <- response
else
stop("argument \"null\" is missing, with no default")
if (is(response, "formula")) {
name.response <- as.character(eval(response)[[2]])
response <- eval(attr(terms(response, data=data), "variables"), data, environment(response))[[attr(terms(response, data=data), "response")]]
} else {
name.response <- deparse(call$response)
}
# covs default
if (missing(covs)) {
if (is(null,"formula")) {
if (termlabels || (null[[length(null)]]==".")) covs<-attr(terms(null, data=data), "term.labels")
else {
covs<-all.vars(null, functions = FALSE, unique=TRUE)
covs<-covs[!(covs%in%name.response)]
}
}
if (is.data.frame(null) || is.vector(null) || is.matrix(null)) {
null <- data.frame(null)
intercept <- apply(null,2,function(x){all(x==1)})
if (all(intercept == FALSE)) covs <- colnames(null)
else covs <- colnames(null)[-intercept]
}
}
# get the model
if (missing(model)) {
if(is(response, "Surv"))
model <- "cox"
else if ((is.factor(response) && length(levels(response)) <= 2) || is.logical(response))
model <- "logistic"
else if (is.factor(response) && length(levels(response)) > 2)
model <- "multinomial"
}
model <- match.arg(tolower(model), c("linear", "logistic", "cox", "poisson", "multinomial"))
# null design X0
if (is(null, "formula")) X0<-model.matrix(null, data) else X0<-null
m <- ncol(X0)
n <- nrow(X0)
form <- formula("response ~ 0 + X0")
if (model=="cox"){
intercept <- apply(X0,2,function(x){all(x==1)})
X0<- X0[,-intercept, drop=F]
}
# make the hat matrix H
if (model=="linear")
H <- X0 %*% solve(crossprod(X0), t(X0))
else {
null.fit <- switch(model,
logistic = glm(form, family = "binomial", data=data),
poisson = glm(form, family = "poisson", data=data),
cox = coxph(form, method = "breslow", data=data),
multinomial = mlogit(form, data=data)
)
if (model=="logistic" || model=="poisson") {
W <- null.fit$weights
sqrtW <- sqrt(W)
X0Whf <- X0 * matrix(sqrtW, n, m)
X0W <- X0 * matrix(W, n, m)
H <- X0 %*% solve(crossprod(X0Whf), t(X0W))
}
else if (model == "cox") {
expci <- exp(null.fit$linear.predictors)
times <- as.vector(null.fit$y)[1:n]
d <- as.vector(null.fit$y)[(n+1):(2*n)]
dtimes <- unique(times[d == 1])
nd <- length(dtimes)
matrixO <- outer(times, dtimes, "==") * matrix(d, n, nd)
ties <- any(colSums(matrixO) > 1)
atrisk <- outer(times, dtimes, ">=")
hazinc <- as.vector(1 / (expci %*% atrisk))
matrixP <- outer(expci, hazinc, "*") * atrisk
matrixPO <- matrixP %*% t(matrixO)
matrixM <- matrix(d, n, nd, byrow=FALSE) * (!atrisk) - matrixPO %*% (!atrisk)
matrixW <- -crossprod(t(matrixPO))
diag(matrixW) <- diag(matrixW) + rowSums(matrixPO)
X0W <- crossprod(X0, matrixW)
X0WX0 <- X0W %*% X0
X0WX0invX0 <- solve(X0WX0, t(X0))
H <- X0 %*% solve(X0WX0, X0W)
}
else if (model == "multinomial") { #temporary
H <- X0 %*% solve(crossprod(X0), t(X0))
}
}
# smooth terms
if (interact) sterms<-paste(paste("s(",paste(covs,collapse=","),")", sep=""), covs)
else sterms<-paste("s(",covs,")", sep="")
# build datacovs
if (is(null,"formula")) {
if (is.null(data)) datacovs<-cbind(model.frame(null,data=data),model.matrix(null,data=data))[,covs,drop=F]
else datacovs<-cbind(data,model.frame(null,data=data),model.matrix(null,data=data))[,covs,drop=F]
}
else datacovs<-null[,covs]
datacovs<-as.data.frame(as.matrix(datacovs))
covs<-colnames(datacovs)
p<-ncol(datacovs)
# arguments: list
l <- max(length(bdeg)*is.list(bdeg),length(nint)*is.list(nint),length(pord)*is.list(pord))
if ((is.list(bdeg)|is.list(nint)|is.list(pord)) && l>1) {
lnames<-c(names(nint),names(pord),names(bdeg))[1:l]
lvector<-vector("list",l); names(lvector)<-lnames
if (!is.list(bdeg)) bdeg<-lapply(lvector,function(x){x<-bdeg})
if (!is.list(nint)) nint<-lapply(lvector,function(x){x<-nint})
if (!is.list(pord)) pord<-lapply(lvector,function(x){x<-pord})
# check the list of covs
stopifnot(all(sort(names(bdeg))==sort(names(nint))) && all(sort(names(nint))==sort(names(pord))))
bdeg<-lapply(bdeg,function(x){ if (length(x)==1) rep(x,p) else x})
nint<-lapply(nint,function(x){ if (length(x)==1) rep(x,p) else x})
pord<-lapply(pord,function(x){ if (length(x)==1) rep(x,p) else x})
if (interact) lvector<-lapply(lnames,function(x){prod(unlist(nint[x])+unlist(bdeg[x])) - prod(unlist(pord[x])) }) else
lvector<-lapply(lnames,function(x){sum( unlist(nint[x])+unlist(bdeg[x])-unlist(pord[x]) ) } )
names(lvector)<-lnames
cvector<-c(0,cumsum(lvector))
crange<-lapply(1:l,function(x){(cvector[x]+1):(cvector[x+1])})
names(crange)<-lnames
# built Z matrix
if (interact){
Z<-do.call(cbind, lapply(lapply(lapply(lnames, function(x){
(diag(nrow(H))-H) %*% btensor(datacovs, unlist(bdeg[x]), unlist(nint[x]), unlist(pord[x]))
}), function(z){
z*(1/sqrt(sum(diag(crossprod(z)))))
}),unlist))
colnames(Z)<-1:ncol(Z)
}
else {
Z<-do.call(cbind, lapply(
lapply(lnames, function(x){
do.call(cbind, lapply( lapply( lapply(1:p, function(y){
(diag(nrow(H))-H) %*% bbase(datacovs[,y],unlist(bdeg[x])[y],unlist(nint[x])[y]) %*%
t(ndiff(unlist(nint[x])[y]+unlist(bdeg[x])[y],unlist(pord[x])[y])) %*%
solve(crossprod(t( ndiff(unlist(nint[x])[y]+unlist(bdeg[x])[y],unlist(pord[x])[y]))))
}), function(z){
z*(1/sqrt(sum(diag(crossprod(z)))))
}),unlist))
}), unlist))
colnames(Z)<-unlist(lapply(lnames, function(y){
sapply(1:p,function(x){rep(colnames(datacovs)[x],(unlist(nint[y])[x]+unlist(bdeg[y])[x]-unlist(pord[y])[x])) })
}))
}
# result
if (!robust) res<-gt(response=response, alternative=Z, null=null, data=data, model=model,..., subsets=crange )
else res<-gt(response=response, alternative=Z, null=null, data=data, model=model, ... )
res@structure <- lapply(lnames,function(x){data.frame(s.term=sterms,bdeg=unlist(bdeg[x]),nint=unlist(nint[x]),pord=unlist(pord[x]))})
}
# arguments: vector
else {
if (is.list(bdeg)|is.list(nint)|is.list(pord)) {bdeg<-unlist(bdeg);nint<-unlist(nint);pord<-unlist(pord)}
if (length(bdeg)==1) bdeg<-rep(bdeg,p)
if (length(nint)==1) nint<-rep(nint,p)
if (length(pord)==1) pord<-rep(pord,p)
stopifnot(length(c(bdeg,nint,pord))==3*p)
# build Z
if (interact) {
Z<-btensor(datacovs, bdeg, nint, pord)
colnames(Z)<-1:ncol(Z)
}
else {
Z<-do.call(cbind, lapply( lapply( lapply(1:p, function(x){
(diag(nrow(H))-H) %*% bbase(datacovs[,x],bdeg[x],nint[x]) %*% t(ndiff(nint[x]+bdeg[x],pord[x])) %*% solve(crossprod(t( ndiff(nint[x]+bdeg[x],pord[x]))))
}),
function(y){
y*(1/sqrt(sum(diag(crossprod(y)))))
}),unlist))
colnames(Z)<-unlist(sapply(1:p,function(x){paste(colnames(datacovs)[x],1:(nint[x]+bdeg[x]-pord[x]), sep="") }))
}
# result
res<-gt(response=response, alternative=Z, null=null, data=data, model=model,... )
res@structure <- list(data.frame(s.term=sterms,bdeg,nint,pord))
}
if (!returnZ) return(res)
else return(list(result=res, Z=Z))
}
###################################################
# External functions for gtPS
###################################################
### Extract smooth terms from a gt.object object
setGeneric("sterms", function(object, ...) standardGeneric("sterms"))
setMethod("sterms", "gt.object",
function(object) {
if (length(object@structure)==1) as.data.frame(object@structure)
else object@structure
}
)
### Construct difference matrix of order pord
ndiff <- function(n, pord = 2) {
if (pord == 0) D <-diag(n)
else {
if (pord == 1) { D <- diff(diag(n)) }
else { D <- diff(ndiff(n, pord - 1)) }
}
return(D)
}
### Truncated p-th power function
tpower <- function(x, t, p)
(x - t) ^ p * (x > t)
### Construct B-spline basis
bbase <- function(x, bdeg, nint){
xl <- min(x) - 0.001*(max(x)-min(x))
xr <- max(x) + 0.001*(max(x)-min(x))
dx <- (xr - xl) / nint
knots <- seq(xl - bdeg * dx, xr + bdeg * dx, by = dx)
P <- outer(x, knots, tpower, bdeg)
n <- dim(P)[2]
D <- ndiff(n, bdeg + 1) / (gamma(bdeg + 1) * dx ^ bdeg)
B <- (-1) ^ (bdeg + 1) * P %*% t(D)
B
}
### Construct tensor product of B-spline bases (reparameterized by Kroneker sum of penalties)
btensor <- function(xs, bdeg, nint, pord, returnU=FALSE){
p <- ncol(xs)
stopifnot( p > 1 )
qq <- nint + bdeg
stopifnot( prod(qq) < 5000 )
bigB<-do.call(cbind, lapply(lapply(1:p,function(x){
bbase(xs[,x], bdeg[x], nint[x])
}), unlist))
tpB<-bigB[,( cumsum(qq)[1]-qq[1]+1 ):( cumsum(qq)[1] )]
ksP<-t(ndiff(ncol(tpB),pord[1])) %*% ndiff(ncol(tpB),pord[1])
for (j in 2:p) {
crange<-( cumsum(qq)[j]-qq[j]+1 ):(cumsum(qq)[j])
qj<-length(crange)
tpB<-kronecker(tpB, t(rep(1,qj)) ) * kronecker( t(rep(1,ncol(tpB))), bigB[,crange] )
Pj<-t(ndiff(qj,pord[j])) %*% ndiff(qj,pord[j])
ksP<-kronecker(diag(qj),ksP) + kronecker( Pj ,diag(ncol(ksP)) )
}
P <- reparamZ(Z=tpB, K=ksP)
if (!returnU) return(P)
else {
U <- reparamZ(Z=tpB, K=ksP, returnU=TRUE)$U
return(list(P=P, U=U)) }
}
### Reparameterize Z
reparamZ <-function (Z, pord, K=NULL, tol = 1e-10, returnU=FALSE) {
if (is.null(K)) K = t(ndiff(ncol(Z), pord)) %*% ndiff(ncol(Z), pord)
ek <- eigen(K, symmetric = TRUE)
nullvals <- ek$values < tol
if (any(nullvals)) {
nullK <- ek$vectors[, nullvals]
U <- Z %*% nullK
colnames(U)<-1:ncol(U)
L <- t(sqrt(ek$values[!nullvals]) * t(ek$vectors[, !nullvals]))
P <- Z %*% L %*% solve(t(L) %*% L)
colnames(P)<-1:ncol(P)
}
else {
U <- matrix(0, nrow = nrow(Z), ncol = 0)
P <- Z
}
if (!returnU) return(P)
else return(list(P=P, U=U))
}
### Standardize Z
reweighZ <- function(Z, null.fit){
X0 <- model.matrix(null.fit)
m <- ncol(X0)
n <- nrow(X0)
# make the hat matrix H
if (attr(null.fit,"class")[1]=="lm")
H <- X0 %*% solve(crossprod(X0), t(X0))
else if ( (attr(null.fit,"class")[1]=="glm") && (null.fit$family[1]=="binomial" || null.fit$family[1]=="poisson") ) {
W <- null.fit$weights
sqrtW <- sqrt(W)
X0Whf <- X0 * matrix(sqrtW, n, m)
X0W <- X0 * matrix(W, n, m)
H <- X0 %*% solve(crossprod(X0Whf), t(X0W))
}
else if (attr(null.fit,"class")[1]=="coxph") {
expci <- exp(null.fit$linear.predictors)
times <- as.vector(null.fit$y)[1:n]
d <- as.vector(null.fit$y)[(n+1):(2*n)]
dtimes <- unique(times[d == 1])
nd <- length(dtimes)
matrixO <- outer(times, dtimes, "==") * matrix(d, n, nd)
ties <- any(colSums(matrixO) > 1)
atrisk <- outer(times, dtimes, ">=")
hazinc <- as.vector(1 / (expci %*% atrisk))
matrixP <- outer(expci, hazinc, "*") * atrisk
matrixPO <- matrixP %*% t(matrixO)
matrixM <- matrix(d, n, nd, byrow=FALSE) * (!atrisk) - matrixPO %*% (!atrisk)
matrixW <- -crossprod(t(matrixPO))
diag(matrixW) <- diag(matrixW) + rowSums(matrixPO)
X0W <- crossprod(X0, matrixW)
X0WX0 <- X0W %*% X0
X0WX0invX0 <- solve(X0WX0, t(X0))
H <- X0 %*% solve(X0WX0, X0W)
}
Zadj<-(diag(nrow(H))-H) %*% Z
Zstar <- Zadj*(1/sqrt(sum(diag(crossprod(Zadj)))))
return(Zstar)
}
gtLI <- function(response, null, data, ..., covs, iorder=2,
termlabels = FALSE, standardize = FALSE) {
# store the call
call <- match.call()
# missing data
if (missing(data)) data<-NULL
if (is.matrix(data)) data <- as.data.frame(data)
# evaluate response, which may be one of the colnames of data
response <- eval(call$response, data, parent.frame())
# response model
if (is(response,"lm") | is(response,"glm") | is(response,"coxph")) {
data <- eval(response$call$data)
if (is.null(data)) stop("argument \"data\" in the response model is missing") else data<-as.data.frame(data)
response<-as.formula(response$call$formula)
}
# settle formula null and vector response if response is a formula
if (missing(null))
if (is(response, "formula"))
null <- response
else
stop("argument \"null\" is missing, with no default")
if (is(response, "formula")) {
name.response <- as.character(eval(response)[[2]])
response <- eval(attr(terms(response, data=data), "variables"), data, environment(response))[[attr(terms(response, data=data), "response")]]
} else {
name.response <- deparse(call$response)
}
# covs default
if (missing(covs)) {
if (is(null,"formula")) {
if (termlabels || (null[[length(null)]]==".")) covs<-attr(terms(null, data=data), "term.labels")
else {
covs<-all.vars(null, functions = FALSE, unique=TRUE)
covs<-covs[!(covs%in%name.response)]
}
}
if (is.data.frame(null) || is.vector(null) || is.matrix(null)) {
null <- data.frame(null)
intercept <- apply(null,2,function(x){all(x==1)})
if (all(intercept == FALSE)) covs <- colnames(null)
else covs <- colnames(null)[-intercept]
}
}
covsformula<- as.formula( paste("~ ", paste(covs, collapse= "+")) )
# construct alternative formula
interactions <-as.formula(paste("~(", paste(attr( terms(covsformula) , "term.labels"), collapse= "+") , ")^",iorder) )
# remove terms from alternative that are also in null
dup <- attr(terms(interactions, data=data), "term.labels") %in% attr(terms(covsformula, data=data), "term.labels")
if (all(dup)) stop("all covariates in alternative also in null")
if (any(dup)) interactions <- formula(terms(interactions,data=data)[!dup])
if (is(null,"formula")) {
dup2 <- attr(terms(interactions, data=data), "term.labels") %in% attr(terms(null, data=data), "term.labels")
if (all(dup2)) stop("all covariates in the alternative are also in the null")
if (any(dup2)) interactions <- formula(terms(interactions,data=data)[!dup])
}
# result
res<-gt(response=response, alternative=interactions, null=null, data=data, standardize=standardize, ...)
res@structure<-list(interactions=attr(terms.formula(interactions),"term.labels"))
return(res)
}
gtKS <- function(response, null, data, model = c("linear", "logistic", "cox", "poisson", "multinomial"), ...,
covs, quant = .25, metric = c("euclidean", "pearson"),
kernel=c("uniform", "exponential", "triangular","neighbours","gauss"),
robust = FALSE, scale=TRUE, termlabels = FALSE, returnZ = FALSE) {
# store the call
call <- match.call()
metric <- match.arg(metric)
kernel <- match.arg(kernel)
# missing data
if (missing(data)) data<-NULL
if (is.matrix(data)) data <- as.data.frame(data)
# evaluate response, which may be one of the colnames of data
response <- eval(call$response, data, parent.frame())
# response model
if (is(response,"lm") | is(response,"glm") | is(response,"coxph")) {
data <- eval(response$call$data)
if (is.null(data)) stop("argument \"data\" in the response model is missing") else data<-as.data.frame(data)
response<-as.formula(response$call$formula)
}
# settle half formula null and vector response if response is a formula
if (missing(null))
if (is(response, "formula"))
null <- response
else
stop("argument \"null\" is missing, with no default")
if (is(response, "formula")) {
name.response <- as.character(eval(response)[[2]])
response <- eval(attr(terms(response, data=data), "variables"), data, environment(response))[[attr(terms(response, data=data), "response")]]
} else {
name.response <- deparse(call$response)
}
# covs default
if (missing(covs)) {
if (is(null,"formula")) {
if (termlabels || (null[[length(null)]]==".") ) covs<-attr(terms(null, data=data), "term.labels")
else {
covs<-all.vars(null, functions = FALSE, unique=TRUE)
covs<-covs[!(covs%in%name.response)]
}
}
if (is.data.frame(null) || is.vector(null) || is.matrix(null)) {
null <- data.frame(null)
intercept <- apply(null,2,function(x){all(x==1)})
if (all(intercept == FALSE)) covs <- colnames(null)
else covs <- colnames(null)[-intercept]
}
}
# build the matrix of selected covs
if (is(null,"formula")) {
if (is.null(data)) datacovs<-cbind(model.frame(null,data=data),model.matrix(null,data=data))[,covs,drop=F]
else datacovs<-cbind(data,model.frame(null,data=data),model.matrix(null,data=data))[,covs,drop=F]
}
else datacovs<-null[,covs]
datacovs<-as.data.frame(as.matrix(datacovs))
covs<-colnames(datacovs)
p<-ncol(datacovs)
# get the model
if (missing(model)) {
if(is(response, "Surv"))
model <- "cox"
else if ((is.factor(response) && length(levels(response)) <= 2) || is.logical(response))
model <- "logistic"
else if (is.factor(response) && length(levels(response)) > 2)
model <- "multinomial"
}
model <- match.arg(tolower(model), c("linear", "logistic", "cox", "poisson", "multinomial"))
# null design X0
if (is(null, "formula")) X0<-model.matrix(null, data) else X0<-null
m <- ncol(X0)
n <- nrow(X0)
form <- formula("response ~ 0 + X0")
# make the hat matrix H
if (model=="linear")
H <- X0 %*% solve(crossprod(X0), t(X0))
else {
null.fit <- switch(model,
logistic = glm(form, family = "binomial", data=data),
poisson = glm(form, family = "poisson", data=data),
cox = coxph(form, method = "breslow", data=data),
multinomial = mlogit(form, data=data)
)
if (model=="logistic" || model=="poisson") {
W <- null.fit$weights
sqrtW <- sqrt(W)
X0Whf <- X0 * matrix(sqrtW, n, m)
X0W <- X0 * matrix(W, n, m)
H <- X0 %*% solve(crossprod(X0Whf), t(X0W))
}
else if (model == "cox") {
expci <- exp(null.fit$linear.predictors)
times <- as.vector(null.fit$y)[1:n]
d <- as.vector(null.fit$y)[(n+1):(2*n)]
dtimes <- unique(times[d == 1])
nd <- length(dtimes)
matrixO <- outer(times, dtimes, "==") * matrix(d, n, nd)
ties <- any(colSums(matrixO) > 1)
atrisk <- outer(times, dtimes, ">=")
hazinc <- as.vector(1 / (expci %*% atrisk))
matrixP <- outer(expci, hazinc, "*") * atrisk
matrixPO <- matrixP %*% t(matrixO)
matrixM <- matrix(d, n, nd, byrow=FALSE) * (!atrisk) - matrixPO %*% (!atrisk)
matrixW <- -crossprod(t(matrixPO))
diag(matrixW) <- diag(matrixW) + rowSums(matrixPO)
X0W <- crossprod(X0, matrixW)
X0WX0 <- X0W %*% X0
X0WX0invX0 <- solve(X0WX0, t(X0))
H <- X0 %*% solve(X0WX0, X0W)
}
else if (model == "multinomial") {
H <- X0 %*% solve(crossprod(X0), t(X0))
}
}
# smooths label
smooths<-paste("s(",paste(covs,collapse=","),")", sep="")
# result
l<-length(quant)
Z<- do.call(cbind,lapply(lapply( lapply(1:l, function(x){
(diag(ncol(H))-H) %*% getK(datacovs, covs, quant[x], metric, kernel, scale)
} ), function(x){ x * (1/sqrt(sum(diag(t(x) %*% x)))) }) ,unlist))
colnames(Z)<-1:(l*n)
lvector<-lapply(1:l,function(x){(((x-1)*n)+1):(x*n)})
names(lvector)<-paste("quant",quant)
if (!robust) res<-gt(response=response, alternative=Z, null=null, data=data, ... ,subsets=lvector)
else res<-gt(response=response, alternative=Z, null=null, data=data, ... )
res@structure <- list(data.frame(smooths,quant, metric, kernel))
if (!returnZ) return(res)
else return(list(result=res, Z=Z))
}
###################################################
# External functions for gtKS
###################################################
getK <- function(data, covs, quant=.25,
metric = c("euclidean", "pearson"),
kernel=c("uniform", "exponential", "triangular","neighbours","gauss"),
scale=TRUE ) {
if (!is.data.frame(data)) stop("data should be a data.frame")
if (missing(covs)) covs <- names(data)
if (length(metric)>1) metric <- "euclidean"
if (!all(covs %in% names(data))) stop("incorrect covariate names")
metric <- match.arg(metric)
kernel <- match.arg(kernel)
# metrics (to add: categorical, mixed)
if ( metric == "euclidean" ) {
if (scale) { DD <- as.matrix(dist(scale(data[,covs]))) }
else { DD <- as.matrix(dist(data[,covs])) }
}
if ( metric == "pearson" ) {
DD <- as.matrix(as.dist(1-abs(cor(t(data[,covs])))))
}
# kernels (to add: Epanechnikov, Biweight, Gauss)
if ( kernel == "uniform" ) {
dDD <- DD[diag(nrow(DD)) == 0]
h <- quantile(dDD, quant)
U <- apply(DD, c(1,2), function(x) { as.numeric(abs(x) <= h) } )
}
if ( kernel == "exponential" ) {
dDD <- DD[diag(nrow(DD)) == 0]
h <- quantile(dDD, quant)
U <- apply(DD, c(1,2), function(x) { as.numeric(exp((-x)/h)) } )
}
if ( kernel == "triangular" ) {
dDD <- DD[diag(nrow(DD)) == 0]
h <- quantile(dDD, quant)
U <- apply(DD, c(1,2), function(x) { as.numeric( (h-abs(x))*(abs(x)<=h) ) } )
}
if ( kernel == "neighbours" ) {
U <- apply(DD, 1, function(x) { as.numeric(x <= quantile(x, quant)) } )
}
if ( kernel == "gauss" ) {
dDD <- DD[diag(nrow(DD)) == 0]
h <- quantile(dDD, quant)
U <- apply(DD, c(1,2), function(x) { as.numeric( dnorm(x/h) ) } )
}
U <- sweep(U, 2, colSums(U), "/")
U
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.