#' @title Build the multichain
#' @description "add_chain" adds a chain to the multichain list. "all_pruned" checks
#' if all chains have been pruned already.
#'
#' @param chain: List of output values with entries as explained below.
#' @param num_estimate: int.
#' Number of parameters to estimate.
#' @param estimate_idx: list of int.
#' Indices of parameters to estimate in the model's full parameter list.
#' @param initial_values: list of float.
#' Starting values for parameters to estimate, taken from the parameters'
#' nominal values in the model or explicitly specified in 'options'.
#' @param initial_position: list of float.
#' Starting position of the MCMC walk in parameter space (log10 of 'initial_values').
#' @param position: list of float.
#' Current position of MCMC walk in parameter space, i.e. the most
#' recently accepted move.
#' @param test_position: list of float.
#' Proposed MCMC mmove.
#' @param acceptance: int.
#' Number of accepted moves.
#' @param T: float.
#' Current value of the simulated annealing temperature.
#' @param T_decay: float.
#' Constant for exponential decay of 'T', automatically calculated such
#' that T will decay from 'options$T_init' down to 1 over the first
#' 'options$anneal_length' setps.
#' @param sig_value: float.
#' Current value of sigma, the scaling factor for the proposal distribution.
#' The MCMC algorithm dynamically tunes this to maintain the aaceptance
#' rate specified in 'options$accept_rate_target'.
#' @param iter: int.
#' Current MCMC step number.
#' @param start_iter: int.
#' Starting MCMC step number.
#' @param ode_options: list.
#' Options for the ODE integrator, currently just 'rtol' for relative
#' tolerance and 'atol' for absolute tolerance.
#' @param initial_prior: float.
#' Starting prior value, i.e. the value at 'initial_position'.
#' @param initial_likelihood: float.
#' Starting likelihood value, i.e. the value at 'initial_position'.
#' @param initial_posterior: float.
#' Starting posterior value, i.e. the value at 'initial_position'.
#' @param accept_prior: float.
#' Current prior value i.e. the value at 'position'.
#' @param accept_likelihood: float.
#' Current likelihood value i.e. the value at 'position'.
#' @param accept_posterior: float.
#' Current posterior value i.e. the value at 'position'.
#' @param test_prior: float.
#' Prior value at 'test_position'.
#' @param test_likelihood: float.
#' Likelihood value at 'test_position'.
#' @param test_posterior: float.
#' Posterior value at 'test_position'.
#' @param hessian: array of float.
#' Current hessian of the posterior landscape. Size is
#' 'num_estimate' x 'num_estimate'.
#' @param positions: array of float.
#' Trace of all proposed moves. Size is 'num_estimate' x 'nsteps'.
#' @param priors: array of float.
#' Trace of all priors corresponding to 'positions'. Length is 'nsteps'.
#' @param likelihoods: array of float.
#' Trace of all likelihoods corresponding to 'positions'. Length is 'nsteps'.
#' @param posteriors: array of float.
#' Trace of all posteriors corresponding to 'positions'. Length is 'nsteps'.
#' @param alphas: array of float. Trace of 'alpha' parameter and calculated values. Length is 'nsteps'.
#' @param sigmas: array of float. Trace of 'sigma' parameter and calculated values. Length is 'nsteps'.
#' @param delta_posteriors: array of float. Trace of 'delta_posterior' parameter and calculated values. Length is 'nsteps'.
#' @param ts: array of float. Trace of 'T' parameter and calculated values. Length is 'nsteps'.
#' @param accepts: logical array.
#' Trace of wheter each proposed move was accepted or not.
#' Length is 'nsteps'.
#' @param rejects: logical array. Trace of wheter each proposed move was rejected or not. Length is 'nsteps'.
#' @param hessians: array of float.
#' Trace of all hessians. Size is 'num_estimate' x 'num_estimate' x 'num_hessians'
#' where 'num_hessians' is the actual number of hessians to be calculated.
#' @param options: list with entries as explained below.
#' Options set -- defines the problem and sets some
#' parameters to control the MCMC algorithm.
#' @param model: List of model parameters - to estimate.
#' The parameter objects must each have a
#' 'value' attribute containing the parameter's numerical value.
#' @param estimate_params: list.
#' List of parameters to estimate, all of which must also be listed
#' in 'options$model$parameters'.
#' @param initial_values: list of float, optional.
#' Starting values for parameters to estimate. If omitted, will use
#' the nominal values from 'options$model$parameters'
#' @param step_fn: callable f(output), optional.
#' User callback, called on every MCMC iteration.
#' @param likelihood_fn: callable f(output, position).
#' User likelihood function.
#' @param prior_fn: callable f(output, position), optional.
#' User prior function. If omitted, a flat prior will be used.
#' @param nsteps: int.
#' Number of MCMC iterations to perform.
#' @param use_hessian: logical, optional.
#' Wheter to use the Hessian to guide the walk. Defaults to FALSE.
#' @param rtol: float or list of float, optional.
#' Relative tolerance for ode solver.
#' @param atol: float or list of float, optional.
#' Absolute tolerance for ode solver.
#' @param norm_step_size: float, optional.
#' MCMC step size. Defaults to a reasonable value.
#' @param hessian_period: int, optional.
#' Number of MCMC steps between Hessian recalculations. Defaults
#' to a reasonable but fairly large value, as Hessian calculation is expensive.
#' @param hessian_scale: float, optional.
#' Scaling factor used in generating Hessian-guided steps. Defaults to a
#' reasonable value.
#' @param sigma_adj_interval: int, optional.
#' How often to adjust 'output$sig_value' while annealing to meet
#' 'accept_rate_target'. Defaults to a reasonable value.
#' @param anneal_length: int, optional.
#' Length of initial "burn-in" annealing period. Defaults to 10% of
#' 'nsteps', or if 'use_hessian' is TRUE, to 'hessian_period' (i.e.
#' anneal until first hessian is calculated)
#' @param T_init: float, optional.
#' Initial temperature for annealing. Defaults to a resonable value.
#' @param accept_rate_target: float, optional.
#' Desired acceptance rate during annealing. Defaults to a reasonable value.
#' See also 'sigma_adj_interval' above.
#' @param sigma_max: float, optional.
#' Maximum value for 'output$sig_value'. Defaults to a resonable value.
#' @param sigma_min: float, optional.
#' Minimum value for 'output$sig_value'. Defaults to a resonable value.
#' @param sigma_step: float, optional.
#' Increment for 'output$sig_value' adjustments. Defaults to a resonable
#' value. To eliminate adaptive step size, set sigma_step to 1.
#' @param thermo_temp: float in the range [0,1], optional.
#' Temperature for thermodynamic integration support. Used to scale
#' likelihood when calculating the posterior value. Defaults to 1,
#' i.e. no effect.
#' @param multichain: list.
#' List of chains to be built by "add_chain".
#'
#'
#' @return multichain: list of chains.
#'
add_chain = function(multichain, chain){
# Add an MCMC chain to the set.
multichain$chains = append(multichain$chains, list(chain))
return(multichain)
}
### prune_all_chains does not work due to structure of R lists.
# need to prune each chain individually and then add to the multichain with add_chain
prune_all_chains = function(multichain, options, burn, thin=1){
# Iterates over all the chains and prunes each one with the specified arguments.
for (chain in multichain$chains){
chain = prune(chain, options, burn ,thin)
}
# If any chains are empty after pruning (i.e. there were no accepts)
# then remove them from the list
for (chain in multichain$chains){
if (length(chain$positions)==0){
cat("WARNING: Chain was empty after pruning and is being removed")
multichain$chains[which(multichain$chains$positions==chain$positions)]=NULL
}
}
return(multichain)
}
all_pruned = function(multichain){
# Indicates whether all chains have been pruned already.
if (length(multichain$chains)==0){
stop("There are no chains.")
}
for (chain in multichain$chains){
if(chain$pruned == FALSE){
return(FALSE)
} else {
return(TRUE)
}
}
}
pool_chains = function(multichain){
# Pool the chains into a single set of pooled positions stored along with the MCMCSet.
if (length(multichain$chains)==0){
stop("There are no chains.")
}
# First, count the total number of steps after pruning and make sure
# all chains have been pruned.
total_positions = 0
for (chain in multichain$chains){
if(chain$pruned==FALSE){
stop("The chains have not yet been pruned.")
} else {
total_positions = total_positions + dim(chain$positions)[1]
}
}
# Allocate enough space for the pooled positions
multichain$pooled_positions = matrix(nrow=total_positions, ncol=multichain$chains[[1]]$num_estimate, byrow=TRUE)
# Iterate again, filling in the pooled positions
start_index=0
for (chain in multichain$chains){
last_index = start_index + dim(chain$positions)[1]
multichain$pooled_positions[start_index:last_index,] = chain$positions
start_index = last_index
}
return(multichain)
}
get_sample_position = function(multichain){
if(length(multichain$chains)==0){
stop("There are no chains.")
}
if(is.null(multichain$pooled_positions)){
stop("Cannot get a sample position until the chains have been pooled.")
}
if (length(multichain$pooled_positions)==0){
stop("There are no positions in the combined pool of positions.")
}
rand_index = sample(1, dim(multichain$pooled_positions)[1])
return(multichain$pooled_positions[rand_index])
}
initialize_and_pool = function(multichain, chains, options, burn, thin=1){
# Adds the chains to the multichain and prunes and pools them
for (chain in chains){
chain = prune(chain, options, burn, thin=1)
multichain = add_chain(multichain)
}
pool_chains(mulichain)
return(multichain)
}
maximum_likelihood = function(multichain){
# Return the maximum log likelihood (minimum negative log likelihood)
# from the set of chains, along with the position giving the maximum likelihood.
if (length(multichain$chains)==0){
stop("There are no chains")
}
max_likelihood = Inf
max_likelihood_position = NULL
for (chain in multichain$chains){
if (length(chain$likelihoods)>0){
chain_max_likelihood_index = which.min(chain$likelihoods)
chain_max_likelihood = chain$likelihoods[chain_max_likelihood_index]
if (chain_max_likelihood < max_likelihood){
max_likelihood = chain_max_likelihood
max_likelihood_position = chain$positions[chain_max_likelihood_index,]
}
}
}
# Check if there are no positions
if (is.null(max_likelihood_position)){
stop ("The maximum likelihood could not be determined because there are no accepted positions")
}
return(list("max_likelihood" = max_likelihood, "max_likelihood_position"=max_likelihood_position))
}
maximum_posterior = function(multichain){
# Return the maximum log posterior (minimum negative log posterior)
# from the set of chains, along with the position giving the maximum posterior.
if (length(multichain$chains)==0){
stop("There are no chains")
}
max_posterior = Inf
max_posterior_position = NULL
for (chain in multichain$chains){
if (length(chain$posteriors)>0){
chain_max_posterior_index = which.min(chain$posteriors)
chain_max_posterior = chain$posteriors[chain_max_posterior_index]
if (chain_max_posterior < max_posterior){
max_posterior = chain_max_posterior
max_posterior_position = chain$positions[chain_max_posterior_index,]
}
}
}
# Check if there are no positions
if (is.null(max_posterior_position)){
stop ("The maximum posterior could not be determined because there are no accepted positions")
}
return(list("max_posterior" = max_posterior, "max_posterior_position"=max_posterior_position))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.