R/tirClust.R

Defines functions getConsensusSeqs tirClust

Documented in tirClust

#' @title 
#' Analyse TIR Sequences of Pre-clustered Transposable Elements
#'
#' @description
#' Takes transposable elements clustered by VSEARCH, 
#' \code{\link{packClust}}, and produces consensus sequences 
#' for the terminal inverted repeats of each. Allows for the 
#' visualisation of TIR similarities between clusters for both 
#' forward and reverse strands.
#'
#' @param packMatches
#' A dataframe containing genomic ranges and names referring 
#' to sequences to be extracted. This dataframe is in the format 
#' produced by coercing a 
#' \code{link[GenomicRanges:GRanges-class]{GRanges}} 
#' object to a dataframe: \code{data.frame(GRanges)}. 
#' 
#' Must contain the following features:
#' \itemize{
#'     \item start - the predicted element's start base 
#'     sequence position.
#'     \item end - the predicted element's end base 
#'     sequence position.
#'     \item seqnames - character string referring to the 
#'     sequence name in \code{Genome} to which \code{start} 
#'     and \code{end} refer to.
#' }
#'
#' @param Genome
#' A DNAStringSet object containing sequences referred to in 
#' \code{packMatches} (the object originally used to predict 
#' the transposons \code{\link{packSearch}}).
#'
#' @param plot
#' Argument specifying whether the TIR consensus sequences 
#' should be plottted as a dendrogram.
#'
#' @param plotSavePath
#' File path for the dendrogram plot. If unspecified, the 
#' dendrogram plot is not saved.
#'
#' @param k
#' The k-mer size to be used for calculating a distance 
#' matrix between TIR consensus sequences. See 
#' \code{\link[kmer]{kdistance}}. Larger word sizes will not 
#' be suitable for longer TIR sequences, due to processing 
#' time required. Additionally, k must be greater than the 
#' TIR sequence length.
#'
#' @param tirLength
#' The TIR size to be considered. Consensus sequences will 
#' be generated based on the first and last \code{tirLength} 
#' bases of a transposon.
#'
#' @param output
#' Controls the output of \code{tirClust}. If output is 
#' specified as "consensus", the consensus sequences of each 
#' TIR cluster will be returned; else, if output is 
#' specified as "dendrogram", a dendrogram object will be 
#' returned for creation of customisable plots.
#'
#' @return
#' If \code{output} is specified as "consensus" (default), 
#' returns a list of consensus sequences for each cluster 
#' specified in \code{packMatches} as a 
#' \code{\link[Biostrings:XStringSet-class]{DNAStringSet}}. 
#' Else if \code{output} is specified as "dendrogram", 
#' returns a dendrogram object used to create hierarchical 
#' clustering diagrams.
#'
#' @seealso
#' code{\link{packClust}}, code{\link{packAlign}},
#' \code{\link[kmer]{kdistance}},
#' \code{\link[Biostrings:XStringSet-class]{DNAStringSet}},
#' \code{\link[ape]{as.alignment}}, \code{\link{packSearch}}
#'     
#' @author
#' Jack Gisby
#' 
#' @examples
#' data(arabidopsisThalianaRefseq)
#' data(packMatches)
#' 
#' tirClust(packMatches, arabidopsisThalianaRefseq)
#'
#' @export

tirClust <- function(packMatches, Genome, tirLength = 25, plot = TRUE,
                        plotSavePath = NULL, k = 5, output = "consensus") {
    
    if (output != "consensus" & output != "dendrogram") {
        stop("Argument 'output' must be specified 
            as 'consensus' or 'dendrogram'")
    }
    
    # use biostrings to get consensus sequences for each cluster's TIRs
    consensusSeqs <- getConsensusSeqs(packMatches, tirLength, Genome)
    
    dend <- stats::as.dendrogram(stats::hclust(
        kmer::kdistance(ape::as.DNAbin(consensusSeqs), k = k)))
    
    
    if (plot == TRUE) {
        plot(dend, main = "Clustered Transposon TIR Relationships")
    }
    
    if (!is.null(plotSavePath)) {
        grDevices::png(plotSavePath, width = 1500, height = 1000)
        plot(dend, main = "Clustered Transposon TIR Relationships")
        grDevices::dev.off()
    }
    
    if (output == "dendrogram") {
        return(dend)
    } else {
        return(consensusSeqs)
    }
}

getConsensusSeqs <- function(packMatches, tirLength, Genome) {
    fConsensusSeqs <- vector("list", 
                            length = length(unique(packMatches$clustID)))
    rConsensusSeqs <- vector("list", 
                            length = length(unique(packMatches$clustID)))
    
    for (c in seq_len(length(unique(packMatches$cluster)))) {
        clustID <- unique(packMatches$cluster)[c]
        clust <- packMatches[packMatches$cluster == clustID, ]
        forwardTirs <- vector("list", length = length(clust[, 1]))
        reverseTirs <- vector("list", length = length(clust[, 1]))
        
        for (i in seq_len(length(clust[, 1]))) {
            seq <- Genome[names(Genome) == clust$seqnames[i]][[1]]
            if (clust$strand[i] == "+") {
                fSeq <- seq[clust$start[i]:(clust$start[i] + tirLength)]
                rSeq <- seq[(clust$end[i] - tirLength):clust$end[i]]
                forwardTirs[[i]] <- fSeq
                reverseTirs[[i]] <- Biostrings::reverseComplement(rSeq)
            } else if (clust$strand[i] == "-") {
                fSeq <- seq[clust$start[i]:(clust$start[i] + tirLength)]
                rSeq <- seq[(clust$end[i] - tirLength):clust$end[i]]
                forwardTirs[[i]] <- Biostrings::reverseComplement(fSeq)
                reverseTirs[[i]] <- rSeq
            }
        }
        
        fConsensusSeqs[[c]] <- Biostrings::consensusString(
            Biostrings::DNAStringSet(forwardTirs))
        rConsensusSeqs[[c]] <- Biostrings::consensusString(
            Biostrings::DNAStringSet(reverseTirs))
    }
    
    fConsensusSeqs <- Biostrings::DNAStringSet(unlist(fConsensusSeqs))
    rConsensusSeqs <- Biostrings::DNAStringSet(unlist(rConsensusSeqs))
    
    names(fConsensusSeqs) <- 
        paste0("f", as.character(unique(packMatches$cluster)))
    names(rConsensusSeqs) <- 
        paste0("r", as.character(unique(packMatches$cluster)))
    
    return(c(fConsensusSeqs, rConsensusSeqs))
}
jackgisby/packFinder documentation built on July 19, 2022, 2:25 a.m.