R/epi_quantile.R

Defines functions get_regions epi_quantile

Documented in epi_quantile

#' @title Identifies epimutations using quantile distribution
#' @description  Identifies CpGs with 
#' outlier methylation values
#' using a sliding window
#' approach to compare individual 
#' methylation profiles of a single
#' case sample against all other 
#' samples from reference panel (controls)
#' @param case beta values for a 
#' single case (data.frame). The samples as 
#' single column and CpGs in rows (named).
#' @param fd feature description as 
#' data.frame having at least chromosome and
#' position as columns and and CpGs in rows (named).
#' @param bctr_pmin Beta value observed 
#' at 0.01 quantile in controls. A beta
#' values has to be lower or equal 
#' to this value to be considered an 
#' epimutation.
#' @param bctr_pmax Beta value observed 
#' at 0.99 quantile in controls. A beta
#' values has to be higher or equal 
#' to this value to be considered an 
#' epimutation.
#' @param window_sz Maximum distance 
#' between a pair of CpGs to defined an
#' region of CpGs as epimutation (default: 1000).
#' @param betas a matrix containing the 
#' beta values for all samples.
#' @param controls control samples names.
#' @param N Minimum number of CpGs, 
#' separated in a maximum of window_sz bass,
#' to defined an epimutation (default: 3).
#' @param offset_abs Extra enforcement 
#' defining an epimutation based on 
#' beta values at 0.005 and 0.995 quantiles (default: 0.15).
#' @return The function returns a data 
#' frame with the regions candidates to be
#' epimutations.
epi_quantile <- function(case, fd, bctr_pmin, bctr_pmax, controls, betas,
                        window_sz = 1000, N = 3, offset_abs = 0.15) 
{
    # Check that there is a single proband
    if (ncol(case) != 1) {
        stop("Epimutation detection with 'quantile'
            approach can only works with a singe proband")
    }
    # Check that "N" is not smaller than 3
    if (N < 3) {
        stop("The minimum number of CpGs allowed is 3")
    }
    
    if (!requireNamespace("methods"))
        stop("'methods' package not available")
    
    collapse_regions <- function(flag_df, case_name, controls, betas) {
        empty <- data.frame(chromosome = character(), start = numeric(),
                            end = numeric(), sz = numeric(), cpg_n = numeric(),
                            cpg_ids = character(), outlier_score = numeric(),
                            outlier_direction = character(), pvalue = numeric(),
                            adj_pvalue = numeric(), delta_beta = numeric() )
        if (nrow(flag_df) == 0) {
            return(empty)
        }
        if (all(is.na(flag_df))) {
            return(empty)
        }
        do.call(rbind, lapply(unique(flag_df$region[!is.na(flag_df$region)]), function(reg) {
            x <- flag_df[flag_df$region == reg,]
            if (nrow(x) > 0) {
                data.frame(
                    chromosome = x$chr[1],
                    start = min(x$pos),
                    end = max(x$pos),
                    sz = max(x$pos) - min(x$pos),
                    cpg_n = nrow(x),
                    cpg_ids = paste(x$CpG_ids, collapse = ",", sep = ""),
                    outlier_score = NA,
                    outlier_direction = x$outlier_direction[1],
                    pvalue = NA,
                    adj_pvalue = NA,
                    delta_beta = abs(mean(betas[x$CpG_ids, controls]) -
                                        mean(betas[x$CpG_ids, colnames(case)]))
                )
            } else {
                empty
            }
        }))
    }
    
    flag_result <- data.frame(
        chr = as.character(fd[rownames(case), "seqnames"]),
        pos = fd[rownames(case), "start"],
        flag_qm_sup = case[, 1] >= bctr_pmax + offset_abs,
        flag_qm_inf = case[, 1] <= bctr_pmin - offset_abs,
        stringsAsFactors = FALSE
    )
    
    flag_result <- flag_result[!is.na(flag_result$flag_qm_sup) &
                                !is.na(flag_result$flag_qm_inf), ]
    #.20221115 - Added.#
    flag_result <- flag_result[with(flag_result, order(chr, pos)),]
    
    # We select the CpGs according to the direction of the outlier
    # permisive mode: one CpG not oulier inside sequence of outliers
    #.20221115.# flag_sup <- flag_result[flag_result$flag_qm_sup,]
    flag_sup <- which(flag_result$flag_qm_sup)
    flag_sup <- flag_result[flag_sup[unique(c(which(diff(flag_sup)<=2), 
                                              which(diff(flag_sup)<=2)+1))],]
    
    #.20221115.# flag_inf <- flag_result[flag_result$flag_qm_inf,]
    flag_inf <- which(flag_result$flag_qm_inf)
    flag_inf <- flag_result[flag_inf[unique(c(which(diff(flag_inf)<=2), 
                                              which(diff(flag_inf)<=2)+1))],]
    
    # We identify the regions taking into account the direction
    reg_sup <- get_regions(flag_sup, window_sz, N, pref = "Rs")
    reg_inf <- get_regions(flag_inf, window_sz, N, pref = "Ri")
    
    # We add a column indicating the direction of the regions/outliers
    if (nrow(reg_sup) != 0) {
        reg_sup$outlier_direction <- "hypermethylation"
        reg_sup$CpG_ids <- rownames(reg_sup)
    }
    if (nrow(reg_inf) != 0) {
        reg_inf$outlier_direction <- "hypomethylation"
        reg_inf$CpG_ids <- rownames(reg_inf)
    }
    
    # We collapse the CpGs in regions and format the output
    clean_sup <- collapse_regions(reg_sup, colnames(case), controls, betas)
    clean_inf <- collapse_regions(reg_inf, colnames(case), controls, betas)
    
    rst <- rbind(clean_inf, clean_sup)
    rst <- rst[!is.na(rst$chromosome),]
    return(rst)
}



# Function used to detect regions of N CpGs closer than window size
# get_regions <- function(flag_df, chr, pos, window_sz = 1000, N = 3, pref = "R") {
get_regions <- function(flag_df, window_sz = 1000, N = 3, pref = "R") {
        if (nrow(flag_df) < N) {
            return(data.frame( chr = NA, pos = NA, region = NA ))
        }
        
        # # Order the input first by chromosome and then by position
        # flag_df <- flag_df[with(flag_df, order(chr, pos)),]
        
        x <- do.call(rbind, lapply(unique(flag_df$chr), function(chr) {
            # Subset by chromosome
            red_df <- flag_df[flag_df$chr == chr,]
            if (nrow(red_df) < N) {
                return(data.frame( chr = NA, pos = NA, region = NA ))
            }
            
            # Get the position of the previous and
            #next probe for each probe in the
            # data.frame. The first and last position get its
            #own position minus/plus
            # the window size to be sure to include
            #them in the resulting data.frame.
            red_df$pos_next <- c(red_df$pos[seq(2, nrow(red_df))],
                                red_df$pos[nrow(red_df)] + window_sz + 1)
            red_df$pos_prev <- c(red_df$pos[1] - window_sz - 1,
                                red_df$pos[seq(1, nrow(red_df) - 1)])
            
            # We add two columns indicating if
            # a probe is within the window size
            # range with its previous and with its next probe
            red_df$in_prev <- red_df$pos - red_df$pos_prev <= window_sz
            red_df$in_next <- red_df$pos_next - red_df$pos <= window_sz
            
            # We drop all the probes that do not
            #have a previous nor a next
            # probe within the range of interest
            red_df <- red_df[red_df$in_prev | red_df$in_next,]
            if (nrow(red_df) < N) {
                return(data.frame( chr = NA, pos = NA, region = NA ))
            }
            
            # Using the cumsum function and by
            # negating the content of the "in_next"
            # column we can define the regions
            # of CpGs within the range since they
            # will be tagged with the same number
            red_df$cum <- cumsum(!red_df$in_next)
            
            # Correct the base position of
            # the change in the region
            red_df$cum2 <- c(
                red_df$cum[1],
                vapply(seq(2, nrow(red_df)), function(ii) {
                    if (red_df$cum[ii] != red_df$cum[ii - 1] &
                        red_df$in_prev[ii] & !red_df$in_next[ii]) {
                        return (red_df$cum[ii] - 1)
                    } else {
                        return (red_df$cum[ii])
                    }
                }, numeric(1)))
            
            # Computing the frequency of each
            # "number" assign to the region we can
            # know how may probes are in it.
            # We can use this frequency to filter out
            # those regions with less probes than given by N.
            # We also give to the regions a proper name.
            fr <- data.frame(table(red_df$cum2), stringsAsFactors = FALSE)
            fr <- as.numeric(as.character(fr$Var1[fr$Freq >= N]))
            if (length(fr) > 0) {
                fr <- data.frame(current = fr, 
                        new = paste0(pref, "_", chr, "_", seq_len(length(fr))))
                red_df <- red_df[red_df$cum2 %in% fr$current,]
                rownames(fr) <- paste0("O", fr$current)
                red_df$region <- fr[paste0("O", red_df$cum2), "new"]
                
                # Since the first and last probe in
                # a chromosome will have TRUE in
                # prev or next distance we need to
                # be sure to drop them if they are not in the window
                red_df$dist_next <- red_df$pos_next - red_df$pos
                red_df$dist_next[length(red_df$dist_next)] <- 0
                red_df <- red_df[red_df$dist_next <= window_sz,]
                # Drop regions with less than N proves after clean
                small_reg <- names(which(table(red_df$region)<N))
                if( length(small_reg) > 0) { # 11/11/2022
                    red_df <- red_df[-which( red_df$region %in% small_reg),]    
                }
                
                if (nrow(red_df) < N) { # 11/11/2022
                    return(data.frame( chr = NA, pos = NA, region = NA ))
                }
                
                # We drop the columns with the flags
                # used for the outlier and region detection
                red_df <- red_df[, c("chr", "pos", "region")]
                return(red_df)
            } else {
                return(data.frame( chr = NA, pos = NA, region = NA ))
            }
        }))
        
        return(x[!is.na(x$chr),])
    }
isglobal-brge/epimutacions documentation built on April 22, 2024, 4:08 a.m.