R/epi_manova.R

Defines functions filter res_manova epi_manova

Documented in epi_manova res_manova

#' @title Identifies epimutations using MANOVA
#' @description  This function identifies 
#' regions with CpGs being outliers
#' using \link[stats]{manova} approach. 
#' @param mixture beta values matrix. 
#' Samples in columns and CpGs in rows.
#' @param  model design (or model) matrix.
#' @param case_id a character string specifying 
#' the name of the case sample.
#' @return The function returns the F statistic, Pillai and P value.
#' 
#' @importFrom stats manova p.adjust
#' 
epi_manova <-  function(mixture, model, case_id)
{
    mixture <- t(mixture)
    mod <- stats::manova(mixture ~ model)
    mod_summary <- summary(mod, tol = 0)$stats
    statistics <- mod_summary[1, c("approx F", "Pillai", "Pr(>F)")]
    
    # Calculate the beta mean difference
    keep_case <- which(case_id %in% rownames(mixture))
    case <- mixture[keep_case, ]
    controls <- mixture[-keep_case,]
    coltrols_mean <- colMeans(controls)
    beta_mean_difference <- coltrols_mean - case
    
    output <- list(statistics, beta_mean_difference)
    return(output)
}

#' @title  Creates a data frame containing the results 
#' obtained from MANOVA
#' @description Creates a data frame containing the
#' genomic regions, statistics and direction for the DMRs.
#' @param bump a DMR obtained from \link[bumphunter]{bumphunter}
#' (i.e. a row from \link[bumphunter]{bumphunter} method result).
#' @param sts  F statistic, Pillai and P value from
#'  \link[epimutacions]{epi_manova} function results. 
#' @returns The function returns a data frame 
#' containing the following information for each DMR: 
#' * genomic ranges
#' * DMR base pairs
#' * number and name of CpGs in DMR
#' * statistics: 
#'     * Outlier score
#'     * Outlier significance
#'     * Outlier direction
#'  * Sample name
#' 
#' For more information about the output see 
#' \link[epimutacions]{epimutations}.

res_manova <- function(bump, sts) 
{
    
    bump$outlier_score <- paste0(sts[[1]][1], "/", sts[[1]][2])
    bump$pvalue <- sts[[1]][3]
    bump$adj_pvalue <- NA
    bump$outlier_direction <-
        ifelse(bump$value < 0, "hypomethylation", "hypermethylation")
    bump[, c( "chromosome", "start", "end", "sz", "cpg_n", "cpg_ids",
        "outlier_score", "outlier_direction", "pvalue", "adj_pvalue",
        "delta_beta", "sample" )]
}

filter <- function(bump_out, pvalue_cutoff)
{
    
    bump_out$adj_pvalue <-
        stats::p.adjust(bump_out$pvalue, method = "hochberg")
    
    bump_out <-
        bump_out[which(bump_out$adj_pvalue < pvalue_cutoff), , drop = FALSE]
    
    return(bump_out)
}
isglobal-brge/epimutacions documentation built on April 22, 2024, 4:08 a.m.