Description Usage Arguments Value Author(s) Examples
mleTheta
computes maximum likelihoood estimate of theta (parameters
between FR (functionality of regulatory variant) and E (outlier
status); Naive-Bayes).
1 | mleTheta(Out, FuncRv, pseudocount)
|
Out |
Binary values of outlier status (E). |
FuncRv |
Soft-assignments of FR from E-step |
pseudocount |
Pseudo count. |
MLE of theta
Yungil Kim, ipw012@gmail.com
1 2 3 4 5 6 7 8 9 10 11 | dataInput <- getData(filename=system.file("extdata", "simulation_RIVER.gz",
package = "RIVER"), ZscoreThrd=1.5)
Feat <- scale(t(Biobase::exprs(dataInput))) # genomic features (G)
Out <- as.vector(as.numeric(unlist(dataInput$Outlier))-1) # outlier status (E)
theta.init <- matrix(c(.99, .01, .3, .7), nrow=2)
costs <- c(100, 10, 1, .1, .01, 1e-3, 1e-4)
logisticAllCV <- glmnet::cv.glmnet(Feat, Out, lambda=costs, family="binomial",
alpha = 0, nfolds=10)
probFuncRvFeat <- getFuncRvFeat(Feat, logisticAllCV$glmnet.fit, logisticAllCV$lambda.min)
posteriors <- getFuncRvPosteriors(Out, probFuncRvFeat, theta=theta.init)
thetaCur <- mleTheta(Out, FuncRv=posteriors$posterior, pseudoc=50)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.