Description Usage Arguments Value Warning Author(s) See Also Examples
mleBeta
computes maximum likelihoood estimate of beta (parameters
between FR (functionality of regulatory variant) and G (genomic
annotations); multivariate logistic regression).
1 | mleBeta(Feat, FuncRv, costs)
|
Feat |
Genomic features (G) |
FuncRv |
Soft-assignments of FR from E-step |
costs |
Candidate penalty parameter values for L2-regularization within logistic regression. |
MLE of beta
To input a vector of candidate penalty values makes
glmnet
faster than to input a single penalty value
Yungil Kim, ipw012@gmail.com
1 2 3 4 5 6 7 8 9 10 11 | dataInput <- getData(filename=system.file("extdata", "simulation_RIVER.gz",
package = "RIVER"), ZscoreThrd=1.5)
Feat <- scale(t(Biobase::exprs(dataInput))) # genomic features (G)
Out <- as.vector(as.numeric(unlist(dataInput$Outlier))-1) # outlier status (E)
theta.init <- matrix(c(.99, .01, .3, .7), nrow=2)
costs <- c(100, 10, 1, .1, .01, 1e-3, 1e-4)
logisticAllCV <- glmnet::cv.glmnet(Feat, Out, lambda=costs, family="binomial",
alpha=0, nfolds=10)
probFuncRvFeat <- getFuncRvFeat(Feat, logisticAllCV$glmnet.fit, logisticAllCV$lambda.min)
posteriors <- getFuncRvPosteriors(Out, probFuncRvFeat, theta=theta.init)
logistic.cur <- mleBeta(Feat, FuncRv=posteriors$posterior, costs)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.