mleBeta: Maximum likelihoood estimate of beta.

Description Usage Arguments Value Warning Author(s) See Also Examples

View source: R/funcRIVER.R

Description

mleBeta computes maximum likelihoood estimate of beta (parameters between FR (functionality of regulatory variant) and G (genomic annotations); multivariate logistic regression).

Usage

1
mleBeta(Feat, FuncRv, costs)

Arguments

Feat

Genomic features (G)

FuncRv

Soft-assignments of FR from E-step

costs

Candidate penalty parameter values for L2-regularization within logistic regression.

Value

MLE of beta

Warning

To input a vector of candidate penalty values makes glmnet faster than to input a single penalty value

Author(s)

Yungil Kim, ipw012@gmail.com

See Also

glmnet

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
dataInput <- getData(filename=system.file("extdata", "simulation_RIVER.gz",
        package = "RIVER"), ZscoreThrd=1.5)
Feat <- scale(t(Biobase::exprs(dataInput))) # genomic features (G)
Out <- as.vector(as.numeric(unlist(dataInput$Outlier))-1) # outlier status (E)
theta.init <- matrix(c(.99, .01, .3, .7), nrow=2)
costs <- c(100, 10, 1, .1, .01, 1e-3, 1e-4)
logisticAllCV <- glmnet::cv.glmnet(Feat, Out, lambda=costs, family="binomial",
        alpha=0, nfolds=10)
probFuncRvFeat <- getFuncRvFeat(Feat, logisticAllCV$glmnet.fit, logisticAllCV$lambda.min)
posteriors <- getFuncRvPosteriors(Out, probFuncRvFeat, theta=theta.init)
logistic.cur <- mleBeta(Feat, FuncRv=posteriors$posterior, costs)

ipw012/RIVER documentation built on March 8, 2020, 7:54 p.m.