constructors | R Documentation |
Constructor of the class scRNAseq.
singlecellRNAseq(experimentName, countMatrix, species, outputDirectory, tSNElist=list(new("Tsne")), dbscanlist=list(new("Dbscan")), cellSimMat= matrix(nrow = 1, ncol = 1, dimnames = list("c1", "c1"), data = 1), clustSimMat=matrix(nrow = 1, ncol = 1, dimnames = list("1", "1"), data = 1), clustSimOrdered=factor(1), markgenlist=list(data.frame( Gene = c("gene1"), mean_log10_fdr = c(NA), n_05 = c(NA), score = c(NA))), clustMark=data.frame(geneName="gene1", clusters=NA), genesInf = data.frame( uniprot_gn_symbol=c("symbol"), clusters="1", external_gene_name="gene", go_id="GO1,GO2", mgi_description="description", entrezgene_description="descr", gene_biotype="gene", chromosome_name="1", Symbol="symbol", ensembl_gene_id="ENS", mgi_id="MGI", entrezgene_id="1", uniprot_gn_id="ID")) TsneCluster(name, pc, perplexity, coordinates) DbscanCluster(name, epsilon, minPoints, clustering)
experimentName |
Character string representing the name of the experiment. |
countMatrix |
An integer matrix representing the raw count matrix with reads or unique molecular identifiers (UMIs). |
species |
Character string representing the species of interest. Currently limited to "mouse" and "human". Other organisms can be added on demand. |
outputDirectory |
A character string of the path to the root output folder. |
tSNElist |
List of 'Tsne' objects representing the different tSNE coordinates generated by CONCLUS. |
dbscanlist |
List of 'Dbscan' objects representing the different Dbscan clustering generated by CONCLUS. |
cellSimMat |
A numeric Matrix defining how many times two cells have been associated to the same cluster across the 84 solutions (by default) of clustering. |
clustSimMat |
A numeric matrix comparing the robustness of the consensus clusters. |
clustSimOrdered |
A factor representing the clusters ordered by similarity. |
markgenlist |
List of data.frames. Each data frame contains the ranked genes of one cluster. |
clustMark |
A data frame containing the top 10 (by default) marker genes of each clusters. |
genesInf |
A data frame containing informations of the markers genes for each clusters. |
name |
A 'character' string representing the name of the Dbscan clustering. |
pc |
A 'numeric' value representing the number of principal components used by CONCLUS to perfom a PCA before calculating the tSNE. |
perplexity |
A 'numeric' vector. Default: c(30, 40) |
coordinates |
A 'numeric' matrix that contains the coordinates of one tSNE solution. |
epsilon |
A 'numeric' vector. The epsilon is the distance to consider two points belonging to the same cluster. Default = c(1.3, 1.4, 1.5) |
minPoints |
A 'numeric' value. The minPoints is the minimum number of points to construct a cluster. |
clustering |
A 'matrix' that contains the result of one DBSCAN clustering solution. |
Object of class scRNAseq
Object of class Tsne
Object of class Dbscan
scRNAseq-class
Tsne-class
Dbscan-class
experimentName <- "Bergiers" outputDirectory <- "YourOutputDirectory" ## Load the count matrix countmatrixPath <- system.file("extdata/countMatrix.tsv", package="conclus") countMatrix <- loadDataOrMatrix(file=countmatrixPath, type="countMatrix", ignoreCellNumber=TRUE) ## Load the coldata coldataPath <- system.file("extdata/colData.tsv", package="conclus") columnsMetaData <- loadDataOrMatrix(file=coldataPath, type="coldata", columnID="cell_ID") ## Create the initial object scr <- singlecellRNAseq(experimentName = experimentName, countMatrix = countMatrix, species = "mouse", outputDirectory = outputDirectory) mat <- matrix(seq_len(20), ncol=2) colnames(mat) <- c("X", "Y") TsneCluster(name = "test", pc = 30, perplexity = 4, coordinates = mat) DbscanCluster("test", 0.5, 2, matrix(1:10))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.