raw <- import_celfiles(celfiles_path = params$celfiles, pheno_data = params$pheno_data, sep = params$sep, filenames = params$filenames)
limma::plotDensities(raw@assayData$exprs, legend = FALSE, main = "Raw data samples density plot")
``` {r, echo=FALSE, message=FALSE, fig.height=5, fig.width=10} affy::boxplot(raw, las = 2, main = "")
## RNA degradation plot ```r deg <- affy::AffyRNAdeg(raw) affy::plotAffyRNAdeg(deg)
eset <- affy::rma(raw)
par(mfrow = c(2, 2)) oligo::MAplot(eset, plot.method = "smoothScatter", main = "")
par(mfrow = c(1,1)) limma::plotDensities(eset, legend = F, main = "Normalized samples density")
par(mfrow = c(1,1)) affy::boxplot(eset, las = 2, main = "", col = "white")
plot_pca(eset, components = params$components, groups = params$group, batch = params$batch)
pca_prop(eset)
plot_dendrogram(eset, groups = params$group)
exp <- Biobase::exprs(eset) a <- calc_var_groups(exp, as.factor(Biobase::pData(eset)[,params$group])) b <- calc_var_total(exp) compare_variances(a, b)
The result shows the proportion of probes in each group which the group variance is greater than the total variance.
rm(eset, raw, deg)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.