# This is a demo for the artwork in ISMB 2014
#
# This artwork is produced using the human embryo expression dataset (available from <a href="http://www.ncbi.nlm.nih.gov/pubmed/20643359" target="20643359">http://www.ncbi.nlm.nih.gov/pubmed/20643359</a>) involves six successive developmental stages (S9-S14) with three replicates (R1-R3) for each stage, including:
## Fang: an expression matrix of 5,441 genes X 18 samples;
## Fang.geneinfo: a matrix of 5,441 X 3 containing gene information;
## Fang.sampleinfo: a matrix of 18 X 3 containing sample information.
###############################################################################
# Load the package 'supraHex'
library(supraHex)
# Load and/or install packages used in this demo
for(pkg in c("Biobase","limma")){
if(!require(pkg, character.only=T)){
source("http://bioconductor.org/biocLite.R")
biocLite(pkg)
lapply(pkg, library, character.only=T)
}
}
############################################################
# Preprocess data (this should be done as your data suggest)
############################################################
# import data containing three variables ('Fang', 'Fang.geneinfo' and 'Fang.sampleinfo')
data(Fang)
data <- Fang
fdata <- as.data.frame(Fang.geneinfo[,2:3])
rownames(fdata) <- Fang.geneinfo[,1]
pdata <- as.data.frame(Fang.sampleinfo[,2:3])
rownames(pdata) <- Fang.sampleinfo[,1]
# create the 'eset' object
colmatch <- match(rownames(pdata),colnames(data))
rowmatch <- match(rownames(fdata),rownames(data))
data <- data[rowmatch,colmatch]
eset <- new("ExpressionSet", exprs=as.matrix(data), phenoData=as(pdata,"AnnotatedDataFrame"), featureData=as(fdata,"AnnotatedDataFrame"))
# A function to convert probeset-centric to entrezgene-centric expression levels
prob2gene <- function(eset){
fdat <- fData(eset)
tmp <- as.matrix(unique(fdat[c("EntrezGene", "Symbol")]))
forder <- tmp[order(as.numeric(tmp[,1])),]
forder <- forder[!is.na(forder[,1]),]
rownames(forder) <- forder[,2]
system.time({
dat <- exprs(eset)
edat <- matrix(data=NA, nrow=nrow(forder), ncol=ncol(dat))
for (i in 1:nrow(forder)){
ind <- which(fdat$EntrezGene==as.numeric(forder[i,1]))
if (length(ind) == 1){
edat[i,] <- dat[ind,]
}else{
edat[i,] <- apply(dat[ind,],2,mean)
}
}
})
rownames(edat) <- rownames(forder) # as gene symbols
colnames(edat) <- rownames(pData(eset))
esetGene <- new('ExpressionSet',exprs=data.frame(edat),phenoData=as(pData(eset),"AnnotatedDataFrame"),featureData=as(data.frame(forder),"AnnotatedDataFrame"))
return(esetGene)
}
esetGene <- prob2gene(eset)
esetGene
# prepare the expression matrix: relative to mean expression level across stages
D <- as.matrix(exprs(esetGene))
D <- D - as.matrix(apply(D,1,mean),ncol=1)[,rep(1,ncol(D))]
# only focus on differentially expressed genes
library(dnet)
## define the design matrix in a order manner
all <- as.vector(pData(esetGene)$Stage)
level <- levels(factor(all))
index_level <- sapply(level, function(x) which(all==x)[1])
level_sorted <- all[sort(index_level, decreasing=F)]
design <- sapply(level_sorted, function(x) as.numeric(all==x)) # Convert a factor column to multiple boolean columns
## a linear model is fitted for every gene by the function lmFit
fit <- lmFit(exprs(esetGene), design)
## define a contrast matrix
### contrast against the average
tmp_all <- paste(level_sorted, collapse="+")
tmp_ave <- paste("(",tmp_all,")/",length(level_sorted), sep="")
tmp_each <- sapply(level_sorted, function(x){
paste(x,"-",tmp_ave, sep="")
})
name_contrast <- sapply(level_sorted, function(x){
paste(x, sep="")
})
contrasts <- list(each = tmp_each,name = name_contrast)
contrast.matrix <- makeContrasts(contrasts=contrasts$each, levels=design)
colnames(contrast.matrix) <- contrasts$name
## computes moderated t-statistics and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
## for p-value
pvals <- as.matrix(fit2$p.value)
## for adjusted p-value
adjpvals <- sapply(1:ncol(pvals),function(x) {
p.adjust(pvals[,x], method="BH")
})
colnames(adjpvals) <- colnames(pvals)
## select differentially expressed genes
flag <- apply(adjpvals<1e-2, 1, sum)
data <- as.matrix(fit2$coefficients[flag>=1,])
############################################################
# Now analyse 'data' prepared above by the package 'supraHex'
############################################################
# (I) Train the supra-hexagonal map with input data only
sMap <- sPipeline(data, xdim=13)
# (II) Perform partitioning operation on the map to obtain continuous clusters (i.e. gene meta-clusters) as they are different from gene clusters in an individual map node
sBase <- sDmatCluster(sMap, which_neigh=2, reindexSeed="svd")
# (III) Define visuals
## the hexagon frame according to mete-clusters
myColor <- c("transparent", "black")
border.color <- myColor[sBase$bases%%2 + 1]
## the size of hexagon according to distance to their neighours
dMat <- sDmat(sMap, which_neigh = 2, distMeasure = "median")
# (IV) Do visualisation in a single map
visDmatCluster(sMap,sBase, gp=grid::gpar(cex=1.5, font=2, col="transparent"), colormap="PapayaWhip-pink-Tomato", area.size=-1*log2(dMat), border.color=border.color)
# As you have seen, the map distance (the hexagon size) tells how far each node is away from its neighbors, thus characterising relationships between clustered genes. The map is also partitioned to obtain gene meta-clusters covering continuous regions, as colour-coded by the 'potato-peach-tomato' colormap.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.