#' Function to conduct gene set enrichment analysis given the input data and the ontology in query
#'
#' \code{dGSEA} is supposed to conduct gene set enrichment analysis given the input data and the ontology in query. It returns an object of class "eTerm".
#'
#' @param data a data frame or matrix of input data. It must have row names, either Entrez Gene ID or Symbol
#' @param identity the type of gene identity (i.e. row names of input data), either "symbol" for gene symbols (by default) or "entrez" for Entrez Gene ID. The option "symbol" is preferred as it is relatively stable from one update to another; also it is possible to search against synonyms (see the next parameter)
#' @param check.symbol.identity logical to indicate whether synonyms will be searched against when gene symbols cannot be matched. By default, it sets to FALSE since it may take a while to do such check using all possible synoyms
#' @param genome the genome identity. It can be one of "Hs" for human, "Mm" for mouse, "Rn" for rat, "Gg" for chicken, "Ce" for c.elegans, "Dm" for fruitfly, "Da" for zebrafish, and "At" for arabidopsis
#' @param ontology the ontology supported currently. It can be "GOBP" for Gene Ontology Biological Process, "GOMF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology Cellular Component, "PS" for phylostratific age information, "PS2" for the collapsed PS version (inferred ancestors being collapsed into one with the known taxonomy information), "SF" for domain superfamily assignments, "DO" for Disease Ontology, "HPPA" for Human Phenotype Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inheritance, "HPCM" for Human Phenotype Clinical Modifier, "HPMA" for Human Phenotype Mortality Aging, "MP" for Mammalian Phenotype, and Drug-Gene Interaction database (DGIdb) and the molecular signatures database (Msigdb) only in human (including "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP", "MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT", "MsigdbC3MIR", "MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF", "MsigdbC5CC", "MsigdbC6", "MsigdbC7"). Note: These four ("GOBP", "GOMF", "GOCC" and "PS") are availble for all genomes/species; for "Hs" and "Mm", these six ("DO", "HPPA", "HPMI", "HPCM", "HPMA" and "MP") are also supported; all "Msigdb" are only supported in "Hs". For details on the eligibility for pairs of input genome and ontology, please refer to the online Documentations at \url{http://supfam.org/dnet/docs.html}. Also supported are the user-customised gene sets; in doing so, the option "Customised" should be used together with the input of the next parameter "customised.genesets"
#' @param customised.genesets an input vector/matrix/list which only works when the user chooses "Customised" in the previous parameter "ontology". It contains either Entrez Gene ID or Symbol
#' @param sizeRange the minimum and maximum size of members of each gene set in consideration. By default, it sets to a minimum of 10 but no more than 1000
#' @param which_distance which distance of terms in the ontology is used to restrict terms in consideration. By default, it sets to 'NULL' to consider all distances
#' @param weight type of score weight. It can be "0" for unweighted (an equivalent to Kolmogorov-Smirnov, only considering the rank), "1" for weighted by input gene score (by default), and "2" for over-weighted, and so on
#' @param nperm the number of random permutations. For each permutation, gene-score associations will be permutated so that permutation of gene-term associations is realised
#' @param fast logical to indicate whether to fast calculate expected results from permutated data. By default, it sets to true
#' @param sigTail the tail used to calculate the statistical significance. It can be either "two-tails" for the significance based on two-tails or "one-tail" for the significance based on one tail
#' @param p.adjust.method the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni", "holm", "hochberg" and "hommel". The first two methods "BH" (widely used) and "BY" control the false discovery rate (FDR: the expected proportion of false discoveries amongst the rejected hypotheses); the last four methods "bonferroni", "holm", "hochberg" and "hommel" are designed to give strong control of the family-wise error rate (FWER). Notes: FDR is a less stringent condition than FWER
#' @param verbose logical to indicate whether the messages will be displayed in the screen. By default, it sets to false for no display
#' @param RData.location the characters to tell the location of built-in RData files. By default, it remotely locates at \url{https://github.com/hfang-bristol/RDataCentre/blob/master/dnet} and \url{http://dnet.r-forge.r-project.org/RData}. Be aware of several versions and the latest one is matched to the current package version. For the user equipped with fast internet connection, this option can be just left as default. But it is always advisable to download these files locally. Especially when the user needs to run this function many times, there is no need to ask the function to remotely download every time (also it will unnecessarily increase the runtime). For examples, these files (as a whole or part of them) can be first downloaded into your current working directory, and then set this option as: \eqn{RData.location="."}. Surely, the location can be anywhere as long as the user provides the correct path pointing to (otherwise, the script will have to remotely download each time). Here is the UNIX command for downloading all RData files (preserving the directory structure): \eqn{wget -r -l2 -A "*.RData" -np -nH --cut-dirs=0 "http://dnet.r-forge.r-project.org/RData"}
#' @return
#' an object of class "eTerm", a list with following components:
#' \itemize{
#' \item{\code{set_info}: a matrix of nSet X 4 containing gene set information, where nSet is the number of gene set in consideration, and the 4 columns are "setID" (i.e. "Term ID"), "name" (i.e. "Term Name"), "namespace" and "distance"}
#' \item{\code{gs}: a list of gene sets, each storing gene members. Always, gene sets are identified by "setID" and gene members identified by "Entrez ID"}
#' \item{\code{data}: a matrix of nGene X nSample containing input data in consideration. It is not always the same as the input data as only those mappable are retained}
#' \item{\code{es}: a matrix of nSet X nSample containing enrichment score, where nSample is the number of samples (i.e. the number of columns in input data}
#' \item{\code{nes}: a matrix of nSet X nSample containing normalised enrichment score. It is the version of enrichment score but after being normalised by gene set size}
#' \item{\code{pvalue}: a matrix of nSet X nSample containing nominal p value}
#' \item{\code{adjp}: a matrix of nSet X nSample containing adjusted p value. It is the p value but after being adjusted for multiple comparisons}
#' \item{\code{gadjp}: a matrix of nSet X nSample containing globally adjusted p value in terms of all samples}
#' \item{\code{fdr}: a matrix of nSet X nSample containing false discovery rate (FDR). It is the estimated probability that the normalised enrichment score represents a false positive finding}
#' \item{\code{qvalue}: a matrix of nSet X nSample containing q value. It is the monotunically increasing FDR}
#' \item{\code{weight}: the input type of score weight}
#' \item{\code{call}: the call that produced this result}
#' }
#' @note The interpretation of returned components:
#' \itemize{
#' \item{"es": enrichment score for the gene set is the degree to which this gene set is overrepresented at the top or bottom of the ranked list of genes in each column of input data;}
#' \item{"nes": normalised enrichment score for the gene set is enrichment score that has already normalised by gene set size. It is comparable across analysed gene sets;}
#' \item{"pvalue": nominal p value is the statistical significance of the enrichment score. It is not adjusted for multiple hypothesis testing, and thus is of limited use in comparing gene sets;}
#' \item{"adjp": adjusted p value by Benjamini & Hochberg method. It is comparable across gene sets;}
#' \item{"gadjp": globally adjusted p value by Benjamini & Hochberg method. Unlike "adjp", it is adjusted in terms of all samples;}
#' \item{"fdr": false discovery rate is the estimated probability that the normalised enrichment score represents a false positive finding. Unlike "adjp" or "gadjp" (also aliased as "fdr") that is derived from a list of p values, this version of fdr is directly calculate from the statistic (i.e. normalised enrichment score);}
#' \item{"qvalue": q value is the monotunically increasing FDR so that the higher "nes", the lower "qvalue".}
#' }
#' @export
#' @seealso \code{\link{dGSEAview}}, \code{\link{dGSEAwrite}}, \code{\link{visGSEA}}
#' @include dGSEA.r
#' @examples
#' \dontrun{
#' # load data
#' #library(Biobase)
#' #TCGA_mutations <- dRDataLoader(RData='TCGA_mutations')
#'
#' # gene set enrichment analysis (GSEA) using KEGG pathways
#' ## calculate the total mutations for each gene
#' #tol <- apply(exprs(TCGA_mutations), 1, sum)
#' #data <- data.frame(tol=tol)
#' #eTerm <- dGSEA(data, identity="symbol", genome="Hs", ontology="MsigdbC2KEGG")
#' #res <- dGSEAview(eTerm, which_sample=1, top_num=5, sortBy="adjp", decreasing=FALSE, details=TRUE)
#' #visGSEA(eTerm, which_sample=1, which_term=rownames(res)[1])
#' #output <- dGSEAwrite(eTerm, which_content="gadjp", which_score="gadjp", filename="eTerm.txt")
#'
#' ## based on customised gene sets
#' #eTerm <- dGSEA(data, ontology="Customised", customised.genesets=sample(rownames(data),100))
#' #res <- dGSEAview(eTerm, which_sample=1, top_num=5, sortBy="adjp", decreasing=FALSE, details=TRUE)
#' #visGSEA(eTerm, which_sample=1, which_term=rownames(res)[1])
#' }
dGSEA <- function(data, identity=c("symbol","entrez"), check.symbol.identity=FALSE, genome=c("Hs", "Mm", "Rn", "Gg", "Ce", "Dm", "Da", "At"), ontology=c("GOBP","GOMF","GOCC","PS","PS2","SF","DO","HPPA","HPMI","HPCM","HPMA","MP", "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP", "MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT", "MsigdbC3MIR", "MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF", "MsigdbC5CC", "MsigdbC6", "MsigdbC7", "DGIdb", "Customised"), customised.genesets=NULL, sizeRange=c(10,20000), which_distance=NULL, weight=1, nperm=1000, fast=T, sigTail=c("two-tails","one-tail"), p.adjust.method=c("BH", "BY", "bonferroni", "holm", "hochberg", "hommel"), verbose=T, RData.location="https://github.com/hfang-bristol/RDataCentre/blob/master/dnet/1.0.7")
{
startT <- Sys.time()
message(paste(c("Start at ",as.character(startT)), collapse=""), appendLF=T)
message("", appendLF=T)
####################################################################################
## match.arg matches arg against a table of candidate values as specified by choices, where NULL means to take the first one
identity <- match.arg(identity)
genome <- match.arg(genome)
ontology <- match.arg(ontology)
sigTail <- match.arg(sigTail)
p.adjust.method <- match.arg(p.adjust.method)
if (is.vector(data)){
data <- matrix(data, nrow=length(data), ncol=1)
}else if(is.matrix(data) | is.data.frame(data)){
data <- as.matrix(data)
}else if(is.null(data)){
stop("The input data must be not NULL.\n")
}
if(is.null(rownames(data))){
stop("The input data must have row names with attached gene id or symbols.\n")
}
if(is.null(colnames(data))){
colnames(data) <- seq(1,ncol(data))
}
if(verbose){
now <- Sys.time()
message(sprintf("First, load the ontology %s and its gene associations in the genome %s (%s) ...", ontology, genome, as.character(now)), appendLF=T)
}
#########
## load Enterz Gene information
EG <- dRDataLoader(paste('org.', genome, '.eg', sep=''), RData.location=RData.location)
###############################
allGeneID <- EG$gene_info$GeneID
allSymbol <- as.vector(EG$gene_info$Symbol)
allSynonyms <- as.vector(EG$gene_info$Synonyms)
# A function converting from symbol to entrezgene
symbol2entrezgene <- function(Symbol, check.symbol.identity, allGeneID, allSymbol, allSynonyms, verbose){
## correct for those symbols being shown as DATE format
if(1){
## for those starting with 'Mar' in a excel-input date format
a <- Symbol
flag <- grep("-Mar$", a, ignore.case=T, perl=T, value=F)
if(length(flag)>=1){
b <- a[flag]
c <- sub("-Mar$", "", b, ignore.case=T, perl=T)
d <- sub("^0", "", c, ignore.case=T, perl=T)
e <- sapply(d, function(x) paste(c("March",x), collapse=""))
a[flag] <- e
Symbol <- a
}
## for those starting with 'Sep' in a excel-input date format
a <- Symbol
flag <- grep("-Sep$", a, ignore.case=T, perl=T, value=F)
if(length(flag)>=1){
b <- a[flag]
c <- sub("-Sep$", "", b, ignore.case=T, perl=T)
d <- sub("^0", "", c, ignore.case=T, perl=T)
e <- sapply(d, function(x) paste(c("Sept",x), collapse=""))
a[flag] <- e
Symbol <- a
}
}
## case-insensitive
match_flag <- match(tolower(Symbol),tolower(allSymbol))
## match vis Synonyms for those unmatchable by official gene symbols
if(check.symbol.identity){
## match Synonyms (if not found via Symbol)
na_flag <- is.na(match_flag)
a <- Symbol[na_flag]
###
tmp_flag <- is.na(match(tolower(allSymbol), tolower(Symbol)))
tmp_Synonyms <- allSynonyms[tmp_flag]
Orig.index <- seq(1,length(allSynonyms))
Orig.index <- Orig.index[tmp_flag]
###
b <- sapply(1:length(a), function(x){
tmp_pattern1 <- paste("^",a[x],"\\|", sep="")
tmp_pattern2 <- paste("\\|",a[x],"\\|", sep="")
tmp_pattern3 <- paste("\\|",a[x],"$", sep="")
tmp_pattern <- paste(tmp_pattern1,"|",tmp_pattern2,"|",tmp_pattern3, sep="")
tmp_result <- grep(tmp_pattern, tmp_Synonyms, ignore.case=T, perl=T, value=F)
ifelse(length(tmp_result)==1, Orig.index[tmp_result[1]], NA)
})
match_flag[na_flag] <- b
if(verbose){
now <- Sys.time()
message(sprintf("\tAmong %d symbols of input data, there are %d mappable via official gene symbols, %d mappable via gene alias but %d left unmappable", length(Symbol), (length(Symbol)-length(a)), sum(!is.na(b)), sum(is.na(b))), appendLF=T)
}
}else{
if(verbose){
now <- Sys.time()
message(sprintf("\tAmong %d symbols of input data, there are %d mappable via official gene symbols but %d left unmappable", length(Symbol), (sum(!is.na(match_flag))), (sum(is.na(match_flag)))), appendLF=T)
}
}
## convert into GeneID
GeneID <- allGeneID[match_flag]
return(GeneID)
}
###############################
if(ontology!="Customised"){
#########
## load GS information
## flag the simplified version of PS
flag_PS2 <- FALSE
if(ontology=="PS2"){
flag_PS2 <- TRUE
ontology <- "PS"
}
GS <- dRDataLoader(paste('org.', genome, '.eg', ontology, sep=''), RData.location=RData.location)
################
if(flag_PS2){
tmp <- as.character(unique(GS$set_info$name))
inds <- sapply(tmp,function(x) which(GS$set_info$name==x))
## new set_info
set_info <- data.frame()
for(i in 1:length(inds)){
set_info<- rbind(set_info,as.matrix(GS$set_info[max(inds[[i]]),]))
}
## new gs
gs <- list()
for(i in 1:length(inds)){
gs[[i]] <- unlist(GS$gs[inds[[i]]], use.names=F)
}
names(gs) <- rownames(set_info)
GS <- list(gs = gs,
set_info = set_info
)
class(GS) <- "GS"
}
################
}else if(!is.null(customised.genesets)){
if(is.list(customised.genesets)){
if(is.null(names(customised.genesets))){
names(customised.genesets) <- paste("C", 1:length(customised.genesets), sep="")
}
}else{
if (is.vector(customised.genesets)){
customised.genesets <- as.matrix(customised.genesets, ncol=1)
}else if(is.matrix(customised.genesets) || is.data.frame(customised.genesets)){
customised.genesets <- as.matrix(customised.genesets)
}else{
stop("The input data must be a vector.\n")
}
if(is.null(colnames(customised.genesets))){
colnames(customised.genesets) <- paste("C", 1:ncol(customised.genesets), sep="")
}
tmp <- colnames(customised.genesets)
customised.genesets <- lapply(1:ncol(customised.genesets), function(j){
customised.genesets[,j]
})
names(customised.genesets) <- tmp
}
## construct GS given the customised genesets
set_info <- data.frame(setID=names(customised.genesets), name=names(customised.genesets), namespace=names(customised.genesets), distance=rep(1, length(customised.genesets)), stringsAsFactors=F)
rownames(set_info) <- names(customised.genesets)
gs <- lapply(customised.genesets, function(x){
if(identity == "symbol"){
Symbol <- x
GeneID <- symbol2entrezgene(Symbol=Symbol, check.symbol.identity=check.symbol.identity, allGeneID=allGeneID, allSymbol=allSymbol, allSynonyms=allSynonyms, verbose=verbose)
}else{
GeneID <- x
match_flag <- match(GeneID,allGeneID)
GeneID <- allGeneID[match_flag]
}
GeneID <- GeneID[!is.na(GeneID)]
return(GeneID)
})
names(gs) <- names(customised.genesets)
## new GS
GS <- list(gs = gs,
set_info = set_info
)
class(GS) <- "GS"
}
###############################
if(verbose){
now <- Sys.time()
message(sprintf("Then, do mapping based on %s (%s) ...", identity, as.character(now)), appendLF=T)
}
if(identity == "symbol"){
Symbol <- rownames(data)
GeneID <- symbol2entrezgene(Symbol=Symbol, check.symbol.identity=check.symbol.identity, allGeneID=allGeneID, allSymbol=allSymbol, allSynonyms=allSynonyms, verbose=verbose)
}else{
GeneID <- rownames(data)
match_flag <- match(GeneID,allGeneID)
GeneID <- allGeneID[match_flag]
}
flag <- !is.na(GeneID)
data <- as.matrix(data[flag,])
GeneID <- GeneID[flag]
## Take average for those identical rows
GeneID_uni <- sort(unique(GeneID))
tmp_matrix <- matrix(0, nrow=length(GeneID_uni),ncol=ncol(data))
for(i in 1:length(GeneID_uni)){
flag <- which(GeneID_uni[i]==GeneID)
if(length(flag)==1){
tmp_matrix[i,] <- data[flag,]
}else{
tmp_matrix[i,] <- colMeans(data[flag,])
}
}
colnames(tmp_matrix) <- colnames(data)
rownames(tmp_matrix) <- GeneID_uni
data <- tmp_matrix
nGene <- nrow(data)
nSample <- ncol(data)
geneid <- rownames(data) ## only those genes in question are considered
if(nGene==0){
warnings("There is no gene being used.\n")
return(NULL)
}
## filter based on "which_distance"
if(!is.null(which_distance) & sum(is.na(GS$set_info$distance))==0){
set_filtered <- sapply(which_distance, function(x) {
GS$set_info$setID[(GS$set_info$distance==as.integer(x))]
})
set_filtered <- unlist(set_filtered)
}else{
set_filtered <- GS$set_info$setID
}
## derive the "gs" of interest
gs <- list()
set_info <- data.frame()
gs_names <- vector()
k <- 1
for(i in 1:length(GS$gs)){
## make sure only those meeting the distance criteria
if(!is.na(match(names(GS$gs[i]),set_filtered))){
gs_origin <- GS$gs[[i]]
flag <- match(gs_origin, geneid)
gs_filtered <- geneid[flag[!is.na(flag)]]
if(length(gs_filtered)>=sizeRange[1] & length(gs_filtered)<=sizeRange[2]){
gs[k] <- list(gs_filtered)
gs_names[k] <- names(GS$gs[i])
flag <- match(names(GS$gs[i]),GS$set_info$setID)
set_info <- rbind(set_info,GS$set_info[flag,])
k <- k+1
}
}
}
names(gs) <- gs_names
nSet <- length(gs)
if(nSet==0){
warnings("There is no gene set being used.\n")
return(NULL)
}
## Enrichment score for the gene set; that is, the degree to which this gene set is overrepresented at the top or bottom of the ranked list of genes in the expression dataset
SS.es <- matrix(0, nrow=nSet, ncol=nSample)
colnames(SS.es) <- colnames(data)
rownames(SS.es) <- names(gs)
## Normalized enrichment score; that is, the enrichment score for the gene set after it has been normalized across analyzed gene sets
SS.nes <- matrix(0, nrow=nSet, ncol=nSample)
colnames(SS.nes) <- colnames(data)
rownames(SS.nes) <- names(gs)
## Nominal p value; that is, the statistical significance of the enrichment score. The nominal p value is not adjusted for gene set size or multiple hypothesis testing; therefore, it is of limited use in comparing gene sets
SS.pvalue <- matrix(1, nrow=nSet, ncol=nSample)
colnames(SS.pvalue) <- colnames(data)
rownames(SS.pvalue) <- names(gs)
## Familywise-error rate; that is, a more conservatively estimated probability that the normalized enrichment score represents a false positive finding. For the goal of GSEA is to generate hypotheses, recommend focusing on the FDR statistic
SS.fwer <- matrix(1, nrow=nSet, ncol=nSample)
colnames(SS.fwer) <- colnames(data)
rownames(SS.fwer) <- names(gs)
## False discovery rate; that is, the estimated probability that the normalized enrichment score represents a false positive finding
SS.fdr <- matrix(1, nrow=nSet, ncol=nSample)
colnames(SS.fdr) <- colnames(data)
rownames(SS.fdr) <- names(gs)
## FDR q-values; that is, monotunically increasing FDR
SS.qvalue <- matrix(1, nrow=nSet, ncol=nSample)
colnames(SS.qvalue) <- colnames(data)
rownames(SS.qvalue) <- names(gs)
## adjusted p value: Adjust P-values for Multiple Comparisons
SS.adjp <- matrix(1, nrow=nSet, ncol=nSample)
colnames(SS.adjp) <- colnames(data)
rownames(SS.adjp) <- names(gs)
if(verbose){
now <- Sys.time()
message(sprintf("Third, perform GSEA analysis based on %d permutations for %d gene sets (%s) ...", nperm, length(gs), as.character(now)), appendLF=T)
}
for(j in 1:nSample){
if(verbose){
now <- Sys.time()
message(sprintf("\tSample %d is being processed at (%s) ...", j, as.character(now)), appendLF=T)
}
rank.score <- data[,j]
ind <- order(rank.score, decreasing=T)
rank.score.sorted <- rank.score[ind]
geneid.sorted <- geneid[ind]
geneid2ind <- ind
## shuffle the gene labels
geneid.shuffled <- matrix(0, nrow=length(geneid.sorted), ncol=nperm)
for(r in 1:nperm){
geneid.shuffled[,r] <- sample(geneid2ind)
}
es.position <- matrix(0, nrow=nSet, ncol=1)
es.observed <- matrix(0, nrow=nSet, ncol=1)
es.expected <- matrix(0, nrow=nSet, ncol=nperm)
for(k in 1:nSet){
if(verbose){
if(k %% 10==0 | k==nSet){
now <- Sys.time()
message(sprintf("\t%d of %d gene sets have been processed (%s) ...", k, nSet, as.character(now)), appendLF=T)
}
}
nHit <- length(gs[[k]])
nMiss <- nGene - nHit
########################################
## observed
observed.point <- rep(-1/nMiss, nGene)
flag <- match(gs[[k]], geneid.sorted)
flag_obs <- flag
if(weight==0) {
observed.point[flag] <- 1/nHit
}else if(weight==1){
hit_tmp <- abs(rank.score.sorted[flag])
observed.point[flag] <- hit_tmp/sum(hit_tmp)
}else{
hit_tmp <- abs(rank.score.sorted[flag] ** weight)
observed.point[flag] <- hit_tmp/sum(hit_tmp)
}
observed.cumsum <- cumsum(observed.point)
max.ES <- max(observed.cumsum)
min.ES <- min(observed.cumsum)
es.observed[k] <- signif(ifelse(max.ES>abs(min.ES), max.ES, min.ES), digits=5)
es.position[k] <- ifelse(max.ES>abs(min.ES), which.max(observed.cumsum), which.min(observed.cumsum))
########################################
## expected
if(fast == F){
for(r in 1:nperm){
expected.point <- rep(-1/nMiss, nGene)
flag <- geneid.shuffled[flag_obs,r]
if(weight==0) {
expected.point[flag] <- 1/nHit
}else if(weight==1){
hit_tmp <- abs(rank.score.sorted[flag])
expected.point[flag] <- hit_tmp/sum(hit_tmp)
}else{
hit_tmp <- abs(rank.score.sorted[flag] ** weight)
expected.point[flag] <- hit_tmp/sum(hit_tmp)
}
expected.cumsum <- cumsum(expected.point)
max.ES <- max(expected.cumsum)
min.ES <- min(expected.cumsum)
es.expected[k,r] <- signif(ifelse(max.ES>abs(min.ES), max.ES, min.ES), digits=5)
}
}else{
## fast calculation
## faster (x5) by cumsum only those in hits
## supposed to assess the enrichment of random permutations
N <- nGene
Nh <- nHit
Nm <- nMiss
for(r in 1:nperm){
flag <- geneid.shuffled[flag_obs,r]
loc.vector <- vector(length=N, mode="numeric")
peak.res.vector <- vector(length=Nh, mode="numeric")
valley.res.vector <- vector(length=Nh, mode="numeric")
tag.correl.vector <- vector(length=Nh, mode="numeric")
tag.diff.vector <- vector(length=Nh, mode="numeric")
tag.loc.vector <- vector(length=Nh, mode="numeric")
loc.vector <- seq(1, N)
tag.loc.vector <- loc.vector[flag]
tag.loc.vector <- sort(tag.loc.vector, decreasing=F)
if(weight==0) {
tag.correl.vector <- rep(1, Nh)
}else if(weight==1){
tag.correl.vector <- rank.score.sorted[tag.loc.vector]
tag.correl.vector <- abs(tag.correl.vector)
}else{
tag.correl.vector <- rank.score.sorted[tag.loc.vector] ** weight
tag.correl.vector <- abs(tag.correl.vector)
}
norm.tag <- 1.0/sum(tag.correl.vector)
tag.correl.vector <- tag.correl.vector * norm.tag
norm.no.tag <- 1.0/Nm
tag.diff.vector[1] <- (tag.loc.vector[1] - 1)
tag.diff.vector[2:Nh] <- tag.loc.vector[2:Nh] - tag.loc.vector[1:(Nh - 1)] - 1
tag.diff.vector <- tag.diff.vector * norm.no.tag
peak.res.vector <- cumsum(tag.correl.vector - tag.diff.vector)
valley.res.vector <- peak.res.vector - tag.correl.vector
max.ES <- max(peak.res.vector)
min.ES <- min(valley.res.vector)
es.expected[k,r] <- signif(ifelse(max.ES>abs(min.ES), max.ES, min.ES), digits=5)
}
}
#############################################################
## for those hits (all being zeros when using weight scheme)
## thus all is NA
## replace those NA with the mean of no-NA entries
tmp <- is.na(es.expected[k,])
es.expected[k,tmp] <- mean(es.expected[k,!tmp])
#############################################################
}
##########
## P-value
if(sigTail=="one-tail"){
# one-tail
pES <- sapply(1:length(es.observed), function(x){
#sum(es.observed[x]<=es.expected[x,])/nperm
signif(ifelse(es.observed[x]>=0, sum(es.observed[x]<=es.expected[x,])/nperm, sum(es.observed[x]>=es.expected[x,])/nperm), digits=5)
})
}else{
# two-tails
pES <- sapply(1:length(es.observed), function(x){
if(sum(es.expected[x,]>=0)==nperm){
# all positives
signif(sum(es.observed[x]<=es.expected[x,])/nperm, digits=5)
}else if(sum(es.expected[x,]>=0)==0){
# all negatives
signif(sum(es.observed[x]>=es.expected[x,])/nperm, digits=5)
}else{
pos.phi <- es.expected[x,es.expected[x,]>=0]
neg.phi <- es.expected[x,es.expected[x,]<0]
signif(ifelse(es.observed[x]>=0, sum(es.observed[x]<=pos.phi)/length(pos.phi), sum(es.observed[x]>=neg.phi)/length(neg.phi)), digits=5)
}
})
}
##############
##############
# min p-value: 1/(1+nperm)
pES[pES==0] <- 1/(1+nperm)
##############
##############
## adjusted p-value
adjP <- stats::p.adjust(pES, method=p.adjust.method)
##########
## normalised ES score
if(sigTail=="one-tail"){
nES.observed <- es.observed / rowMeans(es.expected)
nES.expected <- es.expected / rowMeans(es.expected)
}else{
# two-tails
nES.observed <- matrix(0, nrow=nSet, ncol=1)
nES.expected <- matrix(0, nrow=nSet, ncol=nperm)
for(i in 1:length(es.observed)){
pos.flag <- es.expected[i,]>=0
neg.flag <- es.expected[i,]<0
if(sum(pos.flag)==nperm){
# all positives
# observed
nES.observed[i] <- signif(es.observed[i]/mean(es.expected[i,]), digits=5)
# expected
nES.expected[i,] <- signif(es.expected[i,]/mean(es.expected[i,]), digits=5)
}else if(sum(pos.flag)==0){
# all negatives
# observed
nES.observed[i] <- signif(es.observed[i]/abs(mean(es.expected[i,])), digits=5)
# expected
nES.expected[i,] <- signif(es.expected[i,]/abs(mean(es.expected[i,])), digits=5)
}else{
pos.m <- mean(es.expected[i,pos.flag])
neg.m <- abs(mean(es.expected[i,neg.flag]))
# observed
nES.observed[i] <- signif(ifelse(es.observed[i]>=0, es.observed[i]/pos.m, es.observed[i]/neg.m), digits=5)
# expected
nES.expected[i,pos.flag] <- signif(es.expected[i,pos.flag]/pos.m, digits=5)
nES.expected[i,neg.flag] <- signif(es.expected[i,neg.flag]/neg.m, digits=5)
}
}
}
##########
## FWER
if(sigTail=="one-tail"){
# one-tail
max.expected.flag <- apply(abs(nES.expected), 2, which.max)
max.expected <- sapply(1:length(max.expected.flag), function(x) nES.expected[max.expected.flag[x],x])
FWER <- sapply(1:length(nES.observed), function(x){
ifelse(nES.observed[x]>=0, sum(max.expected>=nES.observed[x])/nperm, sum(max.expected<=nES.observed[x])/nperm)
})
}else{
# two-tails
max.expected.flag <- apply(abs(nES.expected), 2, which.max)
max.expected <- sapply(1:length(max.expected.flag), function(x) nES.expected[max.expected.flag[x],x])
max.expected.pos <- max.expected[max.expected>=0]
max.expected.neg <- max.expected[max.expected<0]
FWER <- sapply(1:length(nES.observed), function(x){
ifelse(nES.observed[x]>=0, sum(max.expected.pos>=nES.observed[x])/length(max.expected.pos), sum(max.expected.neg<=nES.observed[x])/length(max.expected.neg))
})
}
##########
## FDR
if(sigTail=="one-tail"){
# one-tail
FDR <- sapply(1:length(nES.observed), function(x){
stats::median(apply(nES.expected>=nES.observed[x],2,sum)) / sum(nES.observed>=nES.observed[x])
})
FDR <- ifelse(FDR>1,1,FDR)
}else{
# two-tails
nES.observed.pos <- nES.observed[nES.observed>=0]
nES.observed.neg <- nES.observed[nES.observed<0]
FDR <- sapply(1:length(nES.observed), function(x){
if(nES.observed[x] >= 0){
called <- sum(nES.observed.pos>=nES.observed[x])
ifelse(called>0, stats::median(apply(nES.expected>=nES.observed[x],2,sum)) / called, 1)
}else{
called <- sum(nES.observed.neg<=nES.observed[x])
ifelse(called>0, stats::median(apply(nES.expected<=nES.observed[x],2,sum)) / called, 1)
}
})
FDR <- ifelse(FDR>1, 1, FDR)
}
##########
## FDR q-value
flag <- order(nES.observed, decreasing=T)
# for origin index
Orig.index <- seq(1,nSet)
Orig.index <- order(Orig.index[flag], decreasing=F)
# FDR being sorted according to nES.observed
qES.sorted <- FDR[flag]
# for positive part
pos.part <- length(nES.observed[nES.observed>=0])
if(pos.part > 0){
tmp.min <- qES.sorted[pos.part]
# (FDR) from higest to the lowest
for (k in seq(pos.part, 1, -1)) {
if (qES.sorted[k] < tmp.min) {
tmp.min <- qES.sorted[k]
}else{
qES.sorted[k] <- tmp.min
}
}
}
# for negative part
if(pos.part < nSet){
##############################
if(pos.part==0){
neg.part <- pos.part <- 1
}else{
neg.part <- pos.part + 1
}
##############################
tmp.min <- qES.sorted[pos.part]
for (k in seq(neg.part, nSet)) {
if (qES.sorted[k] < tmp.min) {
tmp.min <- qES.sorted[k]
}else{
qES.sorted[k] <- tmp.min
}
}
}
# put back to the origin
qES <- qES.sorted[Orig.index]
SS.es[,j] <- es.observed
SS.nes[,j] <- nES.observed
SS.pvalue[,j] <- pES
SS.adjp[,j] <- adjP
SS.fwer[,j] <- FWER
SS.fdr[,j] <- FDR
SS.qvalue[,j] <- qES
}
## globally adjusted p value for Multiple Comparisons
vec <- c(SS.pvalue)
gadjp <- stats::p.adjust(vec, method="BH")
gadjp <- sapply(gadjp, function(x){
if(x < 0.1 & x!=0){
as.numeric(format(x,scientific=T))
}else{
x
}
})
SS.gadjp <- matrix(gadjp, nrow=nSet, ncol=nSample)
colnames(SS.gadjp) <- colnames(data)
rownames(SS.gadjp) <- names(gs)
####################################################################################
endT <- Sys.time()
message(paste(c("\nEnd at ",as.character(endT)), collapse=""), appendLF=T)
runTime <- as.numeric(difftime(strptime(endT, "%Y-%m-%d %H:%M:%S"), strptime(startT, "%Y-%m-%d %H:%M:%S"), units="secs"))
message(paste(c("Runtime in total is: ",runTime," secs\n"), collapse=""), appendLF=T)
eTerm <- list(set_info = set_info,
gs = gs,
data = data,
es = SS.es,
nes = SS.nes,
pvalue = SS.pvalue,
adjp = SS.adjp,
gadjp = SS.gadjp,
fwer = SS.fwer,
fdr = SS.fdr,
qvalue = SS.qvalue,
weight = weight,
call = match.call()
)
class(eTerm) <- "eTerm"
invisible(eTerm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.