Description Usage Arguments Value Author(s) Examples
galgo
accepts an expression matrix and a
survival object to find robust gene expression signatures related to a
given outcome
1 2 3 4 5 6 7 8 | galgo (population = 30, generations = 2, nCV = 5,
distancetype = "pearson", TournamentSize = 2, period = 1825,
OS, prob_matrix, res_dir = "", start_galgo_callback = callback_default,
end_galgo_callback = callback_base_return_pop,
report_callback = callback_base_report,
start_gen_callback = callback_default,
end_gen_callback = callback_default,
verbose = 2)
|
population |
a number indicating the number of solutions in the population of solutions that will be evolved |
generations |
a number indicating the number of iterations of the galgo algorithm |
nCV |
number of cross-validation sets |
distancetype |
character, it can be
|
TournamentSize |
a number indicating the size of the tournaments for the selection procedure |
period |
a number indicating the outcome period to evaluate the RMST |
OS |
a |
prob_matrix |
a |
res_dir |
a |
start_galgo_callback |
optional callback function for the start of the galgo execution |
end_galgo_callback |
optional callback function for the end of the galgo execution |
report_callback |
optional callback function |
start_gen_callback |
optional callback function for the beginning of the run |
end_gen_callback |
optional callback function for the end of the run |
verbose |
select the level of information printed during galgo execution |
an object of type 'galgo.Obj'
that corresponds to a list
with the elements $Solutions
and $ParetoFront
.
$Solutions
is a l x (n + 5) matrix where n is the number
of features evaluated and l is the number of solutions obtained.
The submatrix l x n is a binary matrix where each row represents
the chromosome of an evolved solution from the solution population, where
each feature can be present (1) or absent (0) in the solution.
Column n +1 represent the k number of clusters for each
solutions. Column n+2 to n+5 shows the SC Fitness and
Survival Fitness values, the solution rank, and the crowding distance of
the solution in the final pareto front respectively.
For easier interpretation of the 'galgo.Obj'
, the output can be
reshaped using the to_list
and
to_dataframe
functions
Martin E Guerrero-Gimenez, mguerrero@mendoza-conicet.gob.ar
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # load example dataset
library(breastCancerTRANSBIG)
data(transbig)
Train <- transbig
rm(transbig)
expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
# We will use a reduced dataset for the example
expression <- expression[sample(seq_len(nrow(expression)), 100), ]
# Now we scale the expression matrix
expression <- t(scale(t(expression)))
# Run galgo
output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, OS = OS)
outputDF <- to_dataframe(output)
outputList <- to_list(output)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.