Description Usage Arguments Value Author(s) Examples
Functions to calculate distance matrices using cpu computing
1 2 3 4 5 6 7 8 9 | calculate_distance_pearson_cpu(x)
calculate_distance_spearman_cpu(x)
calculate_distance_uncentered_cpu(x)
calculate_distance_euclidean_cpu(x)
select_distance(distancetype = "pearson")
|
x |
an expression matrix with features as rows and samples as columns |
distancetype |
a |
select_distance(distancetype)
assigns global function
calculate_distance according to the parameters specified
calculate_distance_pearson_cpu(x)
returns columnwise pearson
distance calculated using the CPU
calculate_distance_uncentered_cpu(x)
returns columnwise
uncentered pearson distance calculated using the CPU
calculate_distance_spearman_cpu(x)
returns columnwise
spearman distance calculated using the CPU
calculate_distance_euclidean_cpu(x)
returns columnwise
euclidean distance calculated using the CPU
Martin E Guerrero-Gimenez, mguerrero@mendoza-conicet.gob.ar
1 2 3 4 5 6 7 8 9 10 11 | # load example dataset
require(iC10TrainingData)
require(pamr)
data(train.Exp)
calculate_distance <- select_distance(distancetype = "pearson")
Dist <- calculate_distance(train.Exp)
k <- 4
Pam <- cluster_algorithm(Dist, k)
table(Pam$cluster)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.