R/plot.R

Defines functions plotCpg mdsPlot

Documented in mdsPlot plotCpg

# Exported functions -----------------------------------------------------------

mdsPlot <- function(dat, numPositions = 1000, sampNames = NULL,
                    sampGroups = NULL, xlim, ylim, pch = 1,
                    pal = brewer.pal(8, "Dark2"), legendPos = "bottomleft",
                    legendNCol, main = NULL) {
    # Check inputs
    if (is(dat, "MethylSet") || is(dat, "RGChannelSet")) {
        b <- getBeta(dat)
    } else if (is(dat, "matrix")) {
        b <- dat
    } else {
        stop("dat must be an 'MethylSet', 'RGChannelSet', or 'matrix'.")
    }
    if (is.null(main)) {
        main <- sprintf(
            "Beta MDS\n%d most variable positions",
            numPositions)
    }

    o <- order(rowVars(b), decreasing = TRUE)[seq_len(numPositions)]
    d <- dist(t(b[o, ]))
    fit <- cmdscale(d)
    if (missing(xlim)) xlim <- range(fit[, 1]) * 1.2
    if (missing(ylim)) ylim <- range(fit[, 2]) * 1.2
    if (is.null(sampGroups)) sampGroups <- rep(1, numPositions)
    sampGroups <- as.factor(sampGroups)
    col <- pal[sampGroups]
    if (is.null(sampNames)) {
        plot(
            x = fit[, 1],
            y = fit[, 2],
            col = col,
            pch = pch,
            xlim = xlim,
            ylim = ylim,
            xlab = "",
            ylab = "",
            main = main)
    } else {
        plot(
            x = 0,
            y = 0,
            type = "n",
            xlim = xlim,
            ylim = ylim,
            xlab = "",
            ylab = "",
            main = main)
        text(x = fit[, 1], y = fit[, 2], sampNames, col = col)
    }
    numGroups <- length(levels(sampGroups))
    if (missing(legendNCol)) legendNCol <- numGroups
    if (numGroups > 1) {
        legend(
            x = legendPos,
            legend = levels(sampGroups),
            ncol = legendNCol,
            text.col = pal[seq_len(numGroups)])
    }
}

plotCpg <- function(dat, cpg, pheno, type = c("categorical", "continuous"),
                    measure = c("beta", "M"), ylim = NULL, ylab = NULL,
                    xlab = "", fitLine = TRUE, mainPrefix = NULL,
                    mainSuffix = NULL) {
    if (is.numeric(cpg)) cpg <- rownames(dat)[cpg]
    type <- match.arg(type)
    measure <- match.arg(measure)
    if (is(dat, "MethylSet") || is(dat, "RGChannelSet")) {
        if (measure == "beta") {
            # NOTE: as.matrix() necessary in case 'dat' is a
            #       DelayedArray-backed minfi object
            x <- as.matrix(getBeta(dat[cpg, ]))
            if (is.null(ylab)) ylab <- "Beta"
            if (is.null(ylim)) ylim <- c(0, 1)
        } else if (measure == "M") {
            x <- getM(dat[cpg, ])
            if (is.null(ylab)) ylab <- "M"
            if (is.null(ylim)) ylim <- range(x)
        }
    } else {
        if (is.null(ylab)) ylab <- "unknown"
        x <- dat
        if (is.vector(x)) {
            x <- matrix(x, ncol = 1)
        } else {
            x <- as.matrix(x)
        }
    }
    main <- paste(mainPrefix, cpg, mainSuffix)
    names(main) <- cpg
    for (i in cpg) {
        if (type == "categorical") {
            stripchart(
                x = x[i, ] ~ pheno,
                vertical = TRUE,
                method = "jitter",
                jitter = 0.15,
                ylab = ylab,
                ylim = ylim,
                main = main[i])
        } else if (type == "continuous") {
            plot(
                x = pheno,
                y = x[i,],
                ylab = ylab,
                xlab = xlab,
                ylim = ylim,
                main = main[i])
            if (fitLine) abline(lm(x[i, ] ~ pheno), col = "blue")
        }
    }
}
hansenlab/minfi documentation built on May 3, 2024, 3:49 p.m.