View source: R/21.get_UTR3eSet.R
get_UTR3eSet | R Documentation |
generate a UTR3eSet object with PDUI information for statistic tests
get_UTR3eSet( sqlite_db, normalize = c("none", "quantiles", "quantiles.robust", "mean", "median"), ..., singleSample = FALSE )
sqlite_db |
A path to the SQLite database for InPAS, i.e. the output of
|
normalize |
A character(1) vector, spcifying the normalization method. It can be "none", "quantiles", "quantiles.robust", "mean", or "median" |
... |
parameter can be passed into
|
singleSample |
A logical(1) vector, indicating whether data is prepared for analysis in a singleSample mode? Default, FALSE |
An object of UTR3eSet which contains following elements: usage: an GenomicRanges::GRanges object with CP sites info. PDUI: a matrix of PDUI PDUI.log2: log2 transformed PDUI matrix short: a matrix of usage of short form long: a matrix of usage of long form if singleSample is TRUE, one more element, signals, will be included.
Jianhong Ou, Haibo Liu
if (interactive()) { library(BSgenome.Mmusculus.UCSC.mm10) library(TxDb.Mmusculus.UCSC.mm10.knownGene) genome <- BSgenome.Mmusculus.UCSC.mm10 TxDb <- TxDb.Mmusculus.UCSC.mm10.knownGene ## load UTR3 annotation and convert it into a GRangesList data(utr3.mm10) utr3 <- split(utr3.mm10, seqnames(utr3.mm10), drop = TRUE) bedgraphs <- system.file("extdata", c( "Baf3.extract.bedgraph", "UM15.extract.bedgraph" ), package = "InPAS" ) tags <- c("Baf3", "UM15") metadata <- data.frame( tag = tags, condition = c("Baf3", "UM15"), bedgraph_file = bedgraphs ) outdir <- tempdir() write.table(metadata, file = file.path(outdir, "metadata.txt"), sep = "\t", quote = FALSE, row.names = FALSE ) sqlite_db <- setup_sqlitedb(metadata = file.path( outdir, "metadata.txt" ), outdir) addLockName(filename = tempfile()) coverage <- list() for (i in seq_along(bedgraphs)) { coverage[[tags[i]]] <- get_ssRleCov( bedgraph = bedgraphs[i], tag = tags[i], genome = genome, sqlite_db = sqlite_db, outdir = outdir, chr2exclude = "chrM" ) } data4CPsSearch <- setup_CPsSearch(sqlite_db, genome, chr.utr3 = utr3[["chr6"]], seqname = "chr6", background = "10K", TxDb = TxDb, hugeData = TRUE, outdir = outdir, minZ = 2, cutStart = 10, MINSIZE = 10, coverage_threshold = 5 ) ## polyA_PWM load(system.file("extdata", "polyA.rda", package = "InPAS")) ## load the Naive Bayes classifier model from the cleanUpdTSeq package library(cleanUpdTSeq) data(classifier) CPs <- search_CPs( seqname = "chr6", sqlite_db = sqlite_db, genome = genome, MINSIZE = 10, window_size = 100, search_point_START = 50, search_point_END = NA, cutEnd = 0, adjust_distal_polyA_end = TRUE, long_coverage_threshold = 2, PolyA_PWM = pwm, classifier = classifier, classifier_cutoff = 0.8, shift_range = 100, step = 5, outdir = outdir ) utr3_cds_cov <- get_regionCov( chr.utr3 = utr3[["chr6"]], sqlite_db, outdir, phmm = FALSE ) eSet <- get_UTR3eSet(sqlite_db, normalize = "none", singleSample = FALSE ) test_out <- test_dPDUI( eset = eSet, method = "fisher.exact", normalize = "none", sqlite_db = sqlite_db ) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.