### inference_tab.R
### Inference reactiveVals ####
inf_uis = c("inf_num_iter",
"inf_num_rs",
"inf_n_try_bs",
"inf_num_processes",
"inf_seed",
"inf_random_tree",
"inf_marginalize",
"inf_keep_equivalent",
"inf_check_indistinguishable",
"inf_show",
"inf_learning_rate",
"inf_error_move")
# inf_rvs = reactiveValues(inf_buttons = list(),
# inf_observers = list())
for (inf_ui in inf_uis)
inputs[[inf_ui]] <- reactiveVal()
inputs[['inf_alpha']] <- reactiveVal()
inputs[['inf_beta']] <- reactiveVal()
inputs[['inf_params']] <- reactiveVal()
if (is.null(session$userData[["ed_table_react_list"]])) {
session$userData[["ed_table_react_list"]] <- reactiveValues()
}
if (is.null(session$userData[["ed_table_react_list_obj"]])) {
session$userData[["ed_table_react_list_obj"]] <- list()
session$userData[["ed_table_react_list_obj"]]$obj = reactiveValues()
session$userData[["ed_table_react_list_obj"]]$observers = list()
}
## Create empty table
if (!is.null(inputs[['m_time_column']])) {
empty_table <-
data.frame(matrix(0,
ncol = length(inputs[['m_time_column']]()),
nrow = 1))
colnames(empty_table) <-
c(inputs[['m_time_column']]())
} else {
empty_table <- data.frame(matrix(0, ncol = 1, nrow = 1))
colnames(empty_table) <- c('T1')
}
## print(empty_table)
ed_tables <- list()
## Create false positive and false negative UI table set to empty table
ed_tables[['inf_alpha']] <-
ed_table('inf_alpha', empty_table, 'alpha_', session)
ed_tables[['inf_beta']] <-
ed_table('inf_beta', empty_table, 'beta_', session)
empty_cell <- data.frame(row=-1, col=-1 , value=0)
inputs[[paste0('inf_alpha','_cell_edit')]] <- reactiveVal(empty_cell)
inputs[[paste0('inf_beta','_cell_edit')]] <- reactiveVal(empty_cell)
### End inference reactiveVals ####
### Inference functions ####
hide_tab <- function() {
shinyjs::show(id="computation_idCol_div")
hideTab(inputId = "main_tabset", target = "Project")
hideTab(inputId = "main_tabset", target = "SC metadata")
hideTab(inputId = "main_tabset", target = "Annotations")
hideTab(inputId = "main_tabset", target = "Filters")
hideTab(inputId = "main_tabset", target = "SC sampling depths")
hideTab(inputId = "main_tabset", target = "Variants")
hideTab(inputId = "main_tabset", target = "Inference")
hideTab(inputId = "main_tabset", target = "Longitudinal display")
}
show_tab <- function(disp = F) {
#browser()
shinyjs::hide(id="computation_idCol_div")
showTab(inputId = "main_tabset", target = "Project")
showTab(inputId = "main_tabset", target = "SC metadata")
showTab(inputId = "main_tabset", target = "Annotations")
showTab(inputId = "main_tabset", target = "Filters")
showTab(inputId = "main_tabset", target = "SC sampling depths")
showTab(inputId = "main_tabset", target = "Variants")
showTab(inputId = "main_tabset", target = "Inference")
showTab(inputId = "main_tabset", target = "Longitudinal display")
if (disp)
#delay(100,
updateTabsetPanel(session, "main_tabset", selected = "Longitudinal display")
#)
}
inf_exec <- function() {
if (length(va_out_dir_()) == 0)
return()
if (dir.exists(va_out_dir_()))
if (file.exists(file.path(va_out_dir_(), "D.RData"))) {
load(file.path(va_out_dir_(),"D.RData"))
make_numbers <- function(tab) {
tab_tmp <- as.data.frame(lapply(tab, FUN = as.numeric), check.names = F)
rownames(tab_tmp) <- rownames(tab)
return(tab_tmp)
}
remove_repeated_rownames <- function(tab) {
extra_col <- all(tab[[1]] == rownames(tab))
if (is.na(extra_col))
extra_col <- FALSE
if (extra_col) {
tab <- tab[ , -1, drop = F]
remove_repeated_rownames(tab)
}
return(tab)
}
remove_na_row <- function(tab, row_min=2, left_rows=1) {
row_basename <- rownames(tab)[1]
if (str_length(row_basename)>0) {
row_basename <- paste0(str_split_fixed(row_basename, pattern = "_", n = 2)[1], "_")
}
else
row_basename <- "row_"
keep_row <- c()
if ( left_rows>0){
if (left_rows>nrow(tab))
left_rows <- nrow(tab)-1
keep_row <- seq((nrow(tab)- left_rows):nrow(tab))
print("keep_row")
print(keep_row)
}
if ((nrow(tab) - left_rows)>0)
range <-seq(1:(nrow(tab) - left_rows))
else
range <- NULL
print("range")
print(range)
for (i in range) {
canc <-0
for (j in seq(1, ncol(tab))) {
if (is.na(tab[i,j])) {
canc <- canc+1
}
print(canc)
}
if(canc < ncol(tab))
keep_row <- c(keep_row, i)
else
{
for (j in seq(1, ncol(tab))) {
if (is.na(tab[i,j]))
tab[i,is.na(tab[i,])] <- 0.0
}
}
}
print(keep_row)
tab_tmp <- tab[keep_row, ,drop = F]
if (nrow(tab_tmp)<=row_min)
tab_tmp <- tab
return(tab_tmp)
}
put_valid_rates <- function(tab) {
r_name <- rownames(tab)
tab_tmp <- as.data.frame(lapply(tab, FUN = abs), check.names = F)
tab_tmp[tab_tmp>=1.0] <- 0.999
tab_tmp[is.na(tab_tmp)] <- 0.001
rownames(tab_tmp) <- r_name
return(tab_tmp)
}
fix_table <- function(tab) {
tab <- remove_repeated_rownames(tab)
tab <- make_numbers(tab)
tab <- remove_na_row(tab, 0, 0)
tab <- put_valid_rates(tab)
return (tab)
}
#browser()
alpha <- session$userData[["ed_table_react_list"]][["inf_alpha"]]$x$data
alpha <- fix_table(alpha)
r_names <- rownames(alpha)
alpha <- transpose(as.data.table(alpha))
colnames(alpha) <- r_names
beta <- session$userData[["ed_table_react_list"]][["inf_beta"]]$x$data
beta <- fix_table(beta)
r_names <- rownames(beta)
beta <- transpose(as.data.table(beta))
colnames(beta) <- r_names
## Notes:
## MA: this is most likely best represented as a R
## 'formula'.
string_tmp <-
"LACE('D' = D,
'learning_rate' = input[['inf_learning_rate']],
'num_iter' = input[['inf_num_iter']],
'num_rs' = input[['inf_num_rs']],
'n_try_bs' = input[['inf_n_try_bs']],
'num_processes' = input[['inf_num_processes']],
'seed' = input[['inf_seed']],
'random_tree' = input[['inf_random_tree']],
'marginalize' = input[['inf_marginalize']],
'keep_equivalent' = input[['inf_keep_equivalent']],
'check_indistinguishable' = input[['inf_check_indistinguishable']],
'error_move' = input[['inf_error_move']],
'show' = input[['inf_show']],
'alpha' = as.list(alpha),
'beta' = as.list(beta)
)
"
list_par <-
list('D' = D,
'learning_rate' = input[['inf_learning_rate']],
'num_iter' = input[['inf_num_iter']],
'num_rs' = input[['inf_num_rs']],
'n_try_bs' = input[['inf_n_try_bs']],
'num_processes' = input[['inf_num_processes']],
'seed' = input[['inf_seed']],
'random_tree' = input[['inf_random_tree']],
'marginalize' = input[['inf_marginalize']],
'keep_equivalent' = input[['inf_keep_equivalent']],
'check_indistinguishable' = input[['inf_check_indistinguishable']],
'error_move' = input[['inf_error_move']],
'show' = input[['inf_show']],
'alpha' = as.list(alpha),
'beta' = as.list(beta)
)
# ##!!! ATTENZIONE QUESTO E' UN TEST FATTO CON 3 CELLULE TUTTE IN TIME_1
# ## ATTENZIONE LACE1.0 NON ACCETTA che non ci siano cellule ad un tempo
# ## OVVIO MA ANCHE NO
# ## QUI SI DUPLICANO I TEMPI VUOTI
# ## COSI NON DA ERRORE
# ## METTERE UN CHECK PRIMA DI PROCEDERE
# D$`before treatment`[1,2] <- 1
# D$`4d on treatment` <- D$`before treatment` #copia
# D$`28d on treatment` <- D$`before treatment` #copia
# D$`57d on treatment` <- D$`before treatment` #copia
#
# rownames(D$`4d on treatment`)= c("S1","S2","S3") #nome cellule
# rownames(D$`28d on treatment`)= c("S4","S5","S6")
# rownames(D$`57d on treatment`)= c("S9","S8","S7")
#
# list_par[["D"]] <- D # must be erased
#
# ##!!! fine preparazione ATTENZIONE QUESTO E' UN TEST FATTO CON 3 CELLULE
# ## CANCELLARE QUANTO SOPRA PRIMA DI MANDARE
show_tmp <- list_par[["show"]]
list_par[["show"]] <- F
inputs[['inf_params']](list_par)
#browser()
#inference_res <- LACE::LACE(D, show = F)
inference_res=do.call('LACE',inputs[['inf_params']]())
save(inference_res,file=file.path(inputs[["project_folder_std"]](),"inference.RData"))
returned_vals <- show_result(rs_())
rs_(returned_vals$rs)
#inputs[["res_lastrefresh"]](returned_vals$message)
}
}
show_result <- function (rs, show = T) {
#browser()
so <- sopt()
so$stderr <- "|"
sopt(so)
returned_vals <- list()
if (file.exists(file.path(inputs[["project_folder_std"]](),"inference.RData"))) {
load(file=file.path(inputs[["project_folder_std"]](),"inference.RData"))
B <- inference_res$B
clones_prevalence <- inference_res$clones_prevalence
C <- inference_res$C
error_rates <- inference_res$error_rates
if (!is.null(B) && !is.null(C) && !is.null(clones_prevalence) && !is.null(error_rates))
if (show) {
#browser()
x <- LACE:::lace_interface(
B_mat = B,
clones_prevalence = clones_prevalence,
C_mat = C,
error_rates = error_rates
)
#browser()
long_job <- function(port, x) {
library(shiny)
library(shinyjs)
library(htmltools)
library(htmlwidgets)
#library(LACE)
res <- list(
"ui" = fluidPage(
useShinyjs(),
LACE:::LACEOutput("LCT_FP", height = "900px", width = "900px")
),
"server" = function (input, output, session) {
output$LCT_FP = LACE:::renderLACE(x)
outputOptions(output,
"LCT_FP",
suspendWhenHidden = FALSE)
hide(id = "navbar")
}
)
server_env <- environment(res$server)
server_env$x <- x
shiny::runApp(res, display.mode = "normal", launch.browser=F, port = port, quiet = F )
}
port(httpuv::randomPort(min = 1024L, max = 49151L, host = "127.0.0.1", n = 20))
if (class(rs)[1] == "r_session")
{
#rs$kill_tree()
rs$close()
rs$finalize()
}
rs <- callr::r_session$new(options = sopt(), wait = T)
rs$supervise(T)
rs$poll_process(4)
rs$call(long_job, args= list("port" = port(), "x" = x))
adr <- reactive({
Sys.sleep(stime())
print(paste0("http://127.0.0.1:", port()))
paste0("http://127.0.0.1:", port())
})
stime(12)
print(adr)
output$res <- renderUI({
tags$iframe(src=adr(), height=1000, width=1000, frameborder = "no")
})
outputOptions(output,
"res",
suspendWhenHidden = FALSE)
#browser()
stime(15)
# stime(2) # melius
# stime(10) # abund
# stime(10) # quam
# stime(10)
# stime(10)
returned_vals$message <- paste("Last update: ", date())
returned_vals$rs <- rs
inputs[["long_job"]](inputs[["long_job"]]()+1)
}
} else {
#returned_vals$message <- paste("Inference results not available. Run LACE first.")
returned_vals$message <- paste("")
returned_vals$rs <- rs
showNotification("Inference results not available. Run LACE first.", duration = 10, type = "warning")
}
inputs[["res_lastrefresh"]](returned_vals$message)
return(returned_vals)
}
observeEvent(inputs[["long_job"]](),{
#browser()
show_tab(T)
}, ignoreInit = T)
## inf_go
inf_go <- function() {
#browser()
# if(inputs[["demo"]]() == "Small_dataset")
if(!is.null(inputs[["demo"]]()))
{
inf_exec()
} else
{
av_exec()
thr_exec()
dp_exec()
va_exec()
inf_exec()
}
# shinyjs::hide(id="computation_idCol_div")
# showTab(inputId = "main_tabset", target = "SC metadata")
# showTab(inputId = "main_tabset", target = "Annotations")
# showTab(inputId = "main_tabset", target = "Filters")
# showTab(inputId = "main_tabset", target = "SC sampling depths")
# showTab(inputId = "main_tabset", target = "Variants")
# showTab(inputId = "main_tabset", target = "Inference")
# browser()
# delay(2000,
# updateTabsetPanel(session, "main_tabset", selected = "Longitudinal display")
# )
}
### End inference functions ####
### Inference observers ####
observeEvent(reactiveValuesToList(input), {
outs <- outputOptions(output)
lapply(names(outs), function(name) {
outputOptions(output, name, suspendWhenHidden = FALSE)
})
},
once = T,
priority = -1)
observe({
inf_observers = lapply(inf_uis,
function(i) {
observeEvent(input[[i]], {
## req(input)
inputs[[i]](input[[i]])
})
output[[i]] <- renderText(inputs[[i]]())
}
)
},
priority = -1)
observeEvent(session$userData[["ed_table_react_list"]][["inf_alpha"]], {
## inputs[["inf_alpha"]](session$userData[['ed_table_react_list']][['inf_alpha']]$x$data)
## inputs[["inf_alpha"]](session$userData[['ed_table_react_list_obj']]$obj[["inf_alpha"]]$x$data)
## inputs[["inf_alpha"]](do.call(cbind, yaml::yaml.load(yaml::as.yaml(session$userData[['ed_table_react_list_obj']]$obj[["inf_alpha"]]$x$data))) %>% {as.data.frame((.)[,-1], row.names = (.)[,1])})
#inputs[["inf_alpha"]](session$userData[['ed_table_react_list']][['inf_alpha']]$x$data)
#data.frame(rownames(session$userData[['ed_table_react_list']][['inf_alpha']]$x$data), session$userData[['ed_table_react_list']][['inf_alpha']]$x$data)
x <- data.frame(rownames(session$userData[['ed_table_react_list']][['inf_alpha']]$x$data), session$userData[['ed_table_react_list']][['inf_alpha']]$x$data, check.names=F)
colnames(x)[1]=""
inputs[["inf_alpha"]](x)
#inputs[["inf_alpha"]](session$userData[["ed_table_react_list_obj"]]$obj[["inf_alpha"]]$x$data)
})
observeEvent(session$userData[["ed_table_react_list"]][["inf_beta"]], {
x <- data.frame(rownames(session$userData[['ed_table_react_list']][['inf_beta']]$x$data), session$userData[['ed_table_react_list']][['inf_beta']]$x$data, check.names=F)
colnames(x)[1]=""
inputs[["inf_beta"]](x)
})
## Find out interactively the time points and use them as columns
observeEvent(inputs[['m_time_column']](), {
if (!is.null(inputs[['m_time_points']]) &
length(inputs[['m_time_points']]()) > 0) {
empty_table <-
data.frame(matrix(0.001,
ncol = length(inputs[['m_time_points']]()),
nrow = 1))
colnames(empty_table) <- c(inputs[['m_time_points']]())
} else {
empty_table <- data.frame(matrix(0.001, ncol = 1, nrow = 1))
colnames(empty_table) <- c('T1')
}
## ed_tables <- list()
## id <- 'inf_alpha'
for (id in c('inf_alpha', 'inf_beta')) {
ed_tables[[id]] <-
ed_table(id,
empty_table,
paste0(str_split(id,pattern = '_')[[1]][2],
'_'),
session)
## output[[id]] <- render_dt(ed_tables[[id]])
## outputOptions(output, id, suspendWhenHidden = FALSE)
}
})
## Change the order of columns accordingly to time points user
## choice
observeEvent(inputs[['m_time_points']](), {
req(inputs[['m_time_column']]())
if(inputs[["load_all_configs"]]()) {
id <- 'inf_alpha'
for (id in c('inf_alpha', 'inf_beta')) {
## remove extra column
mm <- isolate(session$userData[["ed_table_react_list"]][[id]]$x$data)
extra_col <- all(mm[[1]] == rownames(mm))
if (is.na(extra_col))
extra_col <- FALSE
if (extra_col)
mm <- mm[-1]
## Reorder columns
mm <- mm[,inputs[['m_time_points']](), drop = F]
session$userData[["ed_table_react_list"]][[id]]$x$data <- mm
## Remove extra last row on NAN
mm <- mm[-nrow(mm),, drop = F]
## Create table and render it
## output[[id]] <-NULL
ed_tables[[id]] <-
ed_table(id,
mm,
paste0(str_split(id,pattern = '_')[[1]][2], '_'),
session)
print(id)
}
id <- 'inf_alpha'
## output[['inf_alpha']] <-render_dt(ed_tables[['inf_alpha']])
session$userData[["ed_table_react_list_obj"]]$obj[[id]] <-
ed_tables[[id]]
## outputOptions(output, id, suspendWhenHidden = FALSE)
proxy<-dataTableProxy(id)
replaceData(proxy, mm)
id <- 'inf_beta'
## output[['inf_beta']] <-render_dt(ed_tables[['inf_beta']])
session$userData[["ed_table_react_list_obj"]]$obj[[id]] <-
ed_tables[[id]]
## outputOptions(output, id, suspendWhenHidden = FALSE)
proxy<-dataTableProxy(id)
replaceData(proxy, mm)
## refresh()
}
})
# inputs[["inf_go"]] <- reactiveVal(F)
# observeEvent(inputs[["inf_go"]](), {
# hideTab(inputId = "main_tabset", target = "SC metadata")
# shinyjs::hide("SC metadata")
# shinyjs::hide("Annotations")
# shinyjs::hide("Filters")
# shinyjs::hide("SC sampling depths")
# shinyjs::hide("Variants")
#
# hideTab(inputId = "main_tabset", target = "Annotations")
# hideTab(inputId = "main_tabset", target = "Filters")
# hideTab(inputId = "main_tabset", target = "SC sampling depths")
# hideTab(inputId = "main_tabset", target = "Variants")
# hideTab(inputId = "main_tabset", target = "Inference")
#
# }, priority = 5)
observeEvent(input[["inf_next"]], {
## inf_exec()
#browser()
#print("GGGGGGGGGGGGGGGGGGGGG")
#inputs[["inf_go"]](!inputs[["inf_go"]]())
# hideTab(inputId = "main_tabset", target = "Project")
# hideTab(inputId = "main_tabset", target = "SC metadata")
# hideTab(inputId = "main_tabset", target = "Annotations")
# hideTab(inputId = "main_tabset", target = "Filters")
# hideTab(inputId = "main_tabset", target = "SC sampling depths")
# hideTab(inputId = "main_tabset", target = "Variants")
# hideTab(inputId = "main_tabset", target = "Inference")
# shinyjs::show(id="computation_idCol_div")
hide_tab()
delay(2000, inf_go())
},
ignoreInit = T)
observe({
hide(id = "inf_alpha_div")
if (file.exists(sc_metadata_label_()) )
if (!is.null(inputs[['m_time_column']]))
if (inputs[['m_time_column']]() > 0)
shinyjs::show(id="inf_alpha_div")
})
observe({
hide(id = "inf_beta_div")
if ( file.exists(sc_metadata_label_()) )
if (!is.null(inputs[['m_time_column']]))
if (inputs[['m_time_column']]() > 0)
shinyjs::show(id="inf_beta_div")
})
### End inference observes ####
### Inference outputs ####
output[['inf_alpha']] <-
DT::renderDT(session$userData[["ed_table_react_list_obj"]]$obj[['inf_alpha']],
server = T)
outputOptions(output, 'inf_alpha', suspendWhenHidden = FALSE)
output[['inf_beta']] <-
DT::renderDT(session$userData[["ed_table_react_list_obj"]]$obj[['inf_beta']],
server = T)
outputOptions(output, 'inf_beta', suspendWhenHidden = FALSE)
output[['inf_par']] <- renderPrint({
alpha <-
transpose(as.data.table(session$userData[["ed_table_react_list"]][["inf_alpha"]]$x$data));
alpha <-
alpha[, 1:(ncol(alpha) - 1)];
beta <-
transpose(as.data.table(session$userData[["ed_table_react_list"]][["inf_beta"]]$x$data));
beta <-
beta[,1:(ncol(beta)-1)];
list("inf_learning_rate" = input[["inf_learning_rate"]],
"inf_num_iter" = input[["inf_num_iter"]],
"inf_num_rs" = input[['"inf_num_rs"']],
"inf_n_try_bs" = input[["inf_n_try_bs"]],
"inf_num_processes" = input[["inf_num_processes"]],
"inf_seed" = input[["inf_seed"]],
"inf_random_tree" = input[["inf_random_tree"]],
"inf_marginalize" = input[["inf_marginalize"]],
"inf_keep_equivalent" = input[["inf_keep_equivalent"]],
"inf_check_indistinguishable" = input[["inf_check_indistinguishable"]],
"inf_error_move" = input[["inf_error_move"]],
"inf_show" = input[["inf_show"]],
"inf_alpha" = as.list(alpha),
"inf_beta" = as.list(beta) )
})
### End inference outputs ####
### end of file -- inference_tab.R
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.