# Generate a random sample from the LKJ distribution
#
# This function is based on code from
# \url{https://groups.google.com/forum/#!msg/stan-users/3gDvAs_qwN8/Xpgi2rPlx68J}.
#
# @param d The dimension of the correlation matrix
# @param eta The scaling parameter of the LKJ distribution; must be > 1
# (eta=1 means the distribution is uniform over d by d correlation matrices)
# @param cholesky Boolean: return the cholesky decomposition?
rlkj <- function(d, eta = 1, cholesky = FALSE) {
if (d < 2){
stop("Dimension of correlation matrix must be >= 2")
}
if (eta < 1){
stop("The value of eta must be >= 1")
}
alpha <- eta + (d - 2) / 2
L <- matrix(0, d, d)
L[1,1] <- 1
L[-1,1] <- partials <- rgbeta(d - 1, alpha)
if(d == 2) {
L[2,2] <- sqrt(1 - L[2,1]^2)
if(cholesky) return(L)
Sigma <- tcrossprod(L)
return(Sigma)
}
W <- log(1 - partials^2)
for(i in 2:(d - 1)) {
gap <- (i+1):d
gap1 <- i:(d-1)
alpha <- alpha - 0.5
partials <- rgbeta(d - i, alpha)
L[i,i] <- exp(0.5 * W[i-1])
L[gap,i] <- partials * exp(0.5 * W[gap1])
W[gap1] <- W[gap1] + log(1 - partials^2)
}
L[d,d] <- exp(0.5 * W[d-1])
if(cholesky) return(L)
Sigma <- tcrossprod(L)
return(Sigma)
}
rgbeta <- function(d, shape) {
if(shape == Inf) rep(0, d)
else if(shape > 0) -1 + 2 * rbeta(d, shape, shape)
else if(shape == 0) -1 + 2 * rbinom(d, 1, 0.5)
else stop("shape must be non-negative")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.