if(getRversion() >= "3.1.0") utils::globalVariables(c("myLoad","myDMP","myNorm","probe","proportion","cgi","gene","Number","Variance","Value","ID","Sample","diamonds","logFC","negtive_log10P.adj","info","size","Beta_Value","Pheno","economics","unemploy","pop","MatchGeneName"))
DMP.GUI <- function(DMP=myDMP[[1]],
beta=myNorm,
pheno=myLoad$pd$Sample_Group,
cutgroupnumber=4)
{
data(MatchGeneName)
innerheatmap <- function(data)
{
if(nrow(data) < 5000) ncpg <- nrow(data) else ncpg <- 5000
o <- order(-matrixStats::rowVars(data))[1:ncpg]
data <- data[o,]
a <- hclust(dist(data))$order
b <- hclust(dist(t(data)))$order
data <- data[a,b]
m = list(l = 200,r = 50,b = 50,t = 100,pad = 10)
SampleColfunc <- colorRampPalette(c("brown1","deepskyblue"))
p <- plot_ly(z = data,x = colnames(data), y = rownames(data),type = "heatmap")
p <- layout(p, title = paste("Heatmap for ",nrow(data)," 0.05 significant CpGs",sep=""),margin=m)
}
innercgibarplot <- function(h)
{
h <- apply(h,1,function(x) if(sum(x>0)!=0) prop.table(x) else x)
h <- data.frame(cgi=rep(colnames(h),each=nrow(h)),probe=rep(rownames(h),ncol(h)),proportion=as.vector(h))
p <- plot_ly(data=h,x = ~probe, y = ~proportion, type = "bar", color =~cgi)
m = list(l = 70,r = 30,b = 50,t = 50,pad = 10)
p <- layout(p, title = "cgi proportion barplot",margin=m)
}
innerfeaturebarplot <- function(h)
{
h <- apply(h,1,function(x) if(sum(x>0)!=0) prop.table(x) else x)
h <- data.frame(cgi=rep(colnames(h),each=nrow(h)),probe=rep(rownames(h),ncol(h)),proportion=as.vector(h))
p <- plot_ly(data=h,x = ~probe, y = ~proportion, type = "bar", color = ~cgi)
m = list(l = 70,r = 30,b = 50,t = 50,pad = 10)
p <- layout(p, title = "feature proportion barplot",margin=m)
}
innerfeaturecgibarplot <- function(h)
{
h <- apply(h,1,function(x) if(sum(x>0)!=0) prop.table(x) else x)
h <- data.frame(cgi=rep(colnames(h),each=nrow(h)),probe=rep(rownames(h),ncol(h)),proportion=as.vector(h))
p <- plot_ly(data=h,x = ~probe, y = ~proportion, type = "bar", color = ~cgi)
m = list(l = 70,r = 30,b = 100,t = 50,pad = 10)
p <- layout(p, title = "feature-cgi proportion barplot",margin=m)
}
innergeneenrich <- function(select)
{
rank <- sort(table(select[,"gene"]),decreasing=TRUE)
if(length(rank) > 70) rank <- rank[1:70]
select <- select[select$gene %in% names(rank),]
select$logFC <- select$logFC>0
h <- table(as.character(select$gene),select$logFC)
h <- h[order(rowSums(h),decreasing=T),]
colnames(h) <- c("Hypo","Hyper")
h <- data.frame(Variance=rep(colnames(h),each=nrow(h)),gene=rep(rownames(h),ncol(h)),Number=as.vector(h))
p <- plot_ly(data=h,x = ~gene, y = ~Number, type = "bar", color = ~Variance)
m = list(l = 70,r = 30,b = 150,t = 50,pad = 10)
p <- layout(p, title = paste("Top ",length(rank)," Gene Mostly Enriched by Significant CpGs",sep=""),margin=m,barmode = "stack")
}
innerGenePlot <- function(select,Group)
{
message("<< Generating dmrplot >>")
#select <- select[order(select$MAPINFO),]
G <- lapply(Group,function(x) t(x))
G <- lapply(G,function(h) data.frame(Sample=rep(colnames(h),each=nrow(h)),ID=rep(rownames(h),ncol(h)),pos=rep(as.numeric(as.factor(select$MAPINFO)),ncol(h)),Value=as.vector(h)))
for(i in 1:length(G)) G[[i]] <- data.frame(G[[i]],pheno=names(G)[i])
X <- do.call(rbind,G)
X <- cbind(X,showtext=paste("cpgID:",X$ID," Sample:",X$Sample,sep=""))
p <- plot_ly()
p <- add_trace(p,data=X, x=~pos, y=~Value,type="scatter", mode ="markers",text=~showtext,color=~pheno,marker=list(opacity = 0.6,size = 4))
message("<< Dots Plotted >>")
Fit <- lapply(G,function(h) data.frame(pos=unique(h$pos),ID=unique(h$ID),Mean=aggregate(h$Value,by=list(h$pos),mean)[,2]))
for(i in 1:length(Fit)) Fit[[i]] <- data.frame(Fit[[i]],pheno=paste(names(Fit)[i],"Mean"))
df <- data.frame(x = unlist(lapply(Fit, "[[", "pos")),
y = unlist(lapply(Fit, "[[", "Mean")),
ID = unlist(lapply(Fit, "[[", "ID")),
cut = unlist(lapply(Fit, "[[", "pheno")))
p <- add_trace(p,data=df, x = ~x, y = ~y, text = ~ID, type="scatter", color = ~cut,mode = 'lines+markers',line = list(shape = "spline",width = 3,opacity = 0.3),marker=list(size = 1))
message("<< Mean line Plotted >>")
Fit2 <- lapply(G,function(h) data.frame(pos=unique(h$pos),ID=unique(h$ID),Fitted=unique(fitted(loess(h$Value ~ h$pos)))))
for(i in 1:length(Fit2)) Fit2[[i]] <- data.frame(Fit2[[i]],pheno=paste(names(Fit2)[i],"Loess"))
df2 <- data.frame(x = unlist(lapply(Fit2, "[[", "pos")),
y = unlist(lapply(Fit2, "[[", "Fitted")),
ID = unlist(lapply(Fit2, "[[", "ID")),
cut = unlist(lapply(Fit2, "[[", "pheno")))
p <- add_trace(p,data=df2, x = ~x, y = ~y, text = ~ID, color = ~cut, type="scatter" ,mode = 'lines+markers',line =list(shape ="spline",width=3,opacity=0.3,dash = "dash"),marker=list(size = 1))
message("<< Loess line Plotted >>")
regioncol <- c("1stExon"="#00eeee","3'UTR"="#8b008b","5'UTR"="#00ee00","Body"="#ffd700","IGR"="#9e9e9e","TSS1500"="#ff3030","TSS200"="#00688b")
featureregion <- list()
for(i in names(regioncol))
{
index <- which(select$feature==i)
if(length(index)==0) next
oldw <- getOption("warn")
options(warn = -1)
featureregion[[i]]<- data.frame(x1 = index-0.5,
x2 = index+0.5,
y = -0.05,
IDfeature = i,
color = regioncol[i])
options(warn = oldw)
}
cgicol <- c("island"="#ff83fa","opensea"="#ffdab9","shelf"="#bbffff","shore"="#98fb98")
cgiregion <- list()
for(i in names(cgicol))
{
index <- which(select$cgi==i)
if(length(index)==0) next
oldw <- getOption("warn")
options(warn = -1)
cgiregion[[i]]<- data.frame(x1 = index-0.5,
x2 = index+0.5,
y = -0.1,
IDfeature = i,
color = cgicol[i])
options(warn = oldw)
}
#############################################
df <- rbind(do.call(rbind,featureregion),do.call(rbind,cgiregion))
colorrecord <- c()
for(i in 1:nrow(df))
{
legend = F
if(!df$color[i] %in% colorrecord)
{
colorrecord <- c(colorrecord,as.character(df$color[i]))
legend = T
}
p <- add_trace(p,
x = c(df$x1[i], df$x2[i]), # x0, x
y = c(df$y[i],df$y[i]), # y0, y1
name = df$IDfeature[i],
mode = "lines",
line = list(color = df$color[i], width = 10 , opacity=0.5),
showlegend = legend,
hoverinfo = "text",
# Create custom hover text
text = df$IDfeature[i],
type="scatter")
}
#############################################
message("<< Cgi Bar Plotted >>")
p <- layout(p, title = select$gene[1])
}
innervolcanoplot <- function(select)
{
h <- diamonds[sample(nrow(diamonds),nrow(select),replace=T),c("carat","price","carat","clarity")]
colnames(h) <- c("logFC","negtive_log10P.adj","size","info")
h[[1]] <- select$logFC
h[[2]] <- -(1)*log(select$adj.P.Val,10)
h[[3]] <- (abs(h[[1]])-min(abs(h[[1]])))/(max(abs(h[[1]])-min(abs(h[[1]]))))+(h[[2]]-min(h[[2]]))/(max(h[[2]]-min(h[[2]])))
h[[4]] <- paste(rownames(select),select$gene,select$feature,select$cgi)
if(nrow(h) > 1500) h2 <- h[sample(1:nrow(h),1500),]
h2 <- h2[order(h2$size),]
SampleColfunc <- colorRampPalette(c("brown1","deepskyblue"))
p <- plot_ly(h2, x=logFC, y=negtive_log10P.adj, text=info,mode = "markers",showlegend=FALSE,marker=list(opacity=0.5,size=3+(size*4),color=SampleColfunc(nrow(h2))))
m = list(l = 70,r = 70,b = 50,t = 50,pad = 10)
if(nrow(h) <= 1500)
{
p <- layout(p, title = paste("Volcano plot for",nrow(h2),"significant CpGs"),margin=m)
}else
{
p <- layout(p, title = paste("Volcano plot for 1500 out of total",nrow(h)," significant CpGs (Random)"),margin=m)
}
}
innercpgplot <- function(c,cpgname)
{
if(class(c$Pheno)=="numeric")
{
p <- plot_ly(c, x = ~Pheno, y = ~Beta_Value, text = ~Sample_Name, color = ~Beta_Value, mode = "markers",marker=list(opacity=0.5,size=5))
m = list(l = 70,r = 70,b = 50,t = 50,pad = 10)
p <- layout(p, title = paste("Scatter plot for",cpgname),margin=m)
} else {
p <- plot_ly(c, y = ~Beta_Value, color = ~Pheno, type = "box", boxpoints = "all", jitter = 0.3,pointpos = 0)
m = list(l = 70,r = 70,b = 50,t = 50,pad = 10)
p <- layout(p, title = paste("Boxplot for",cpgname),margin=m)
}
}
innertest <- function()
{
m <- loess(unemploy / pop ~ as.numeric(date), data = economics)
p <- economics %>%
plot_ly(x = date, y = unemploy / pop) %>%
add_trace(y = fitted(m)) %>%
layout(showlegend = F)
}
app <- shinyApp(
ui = fluidPage(
tags$head(tags$style("#test{height:40vh !important;}")),
tags$head(tags$style("#heatmap{height:80vh !important;}")),
tags$head(tags$style("#cgibarplot{height:40vh !important;}")),
tags$head(tags$style("#featurebarplot{height:40vh !important;}")),
tags$head(tags$style("#featurecgibarplot{height:40vh !important;}")),
tags$head(tags$style("#geneenrich{height:40vh !important;}")),
tags$head(tags$style("#geneplot{height:40vh !important;}")),
tags$head(tags$style("#volcanoplot{height:40vh !important;}")),
tags$head(tags$style("#cpgplot{height:40vh !important;}")),
tags$head(tags$style("#inc{height:40vh !important;}")),
theme = shinytheme("readable"),
titlePanel("DMP Overview"),
sidebarLayout(
sidebarPanel(
br(),
width=3,
sliderInput("pvaluebin","P value Cutoff:",min = 0,max = 1,step = 0.025,value = 0.05),
sliderInput("logFCbin","abs(logFC) Cutoff:",min = 0,max = 1,step = 0.025,value = 0),
actionButton("go", "Submit"),
br(),
br(),
br(),
textInput("genebin", "Gene Symbol:", value = "NFIX"),
actionButton("genesearch", "Submit"),
br(),
br(),
br(),
textInput("cpgbin", "CpG ID:", value = "cg06822689"),
actionButton("cpgsearch", "Submit")
),
mainPanel(
tabsetPanel(
tabPanel("DMPtable",
align = "left",
div(dataTableOutput("table"), style = "font-size:75%")
),
tabPanel("Heatmap",
align = "center",
plotlyOutput("heatmap")
),
tabPanel("Feature&Cgi",
align = "center",
br(),
fluidRow(
column(width = 6,
plotlyOutput("cgibarplot")
),
column(width = 6,
plotlyOutput("featurebarplot")
),#column
column(width = 12,
plotlyOutput("featurecgibarplot")
)#column
)#fluidRow
),
tabPanel("Gene",
align = "center",
fluidRow(
align = "center",
br(),
column(width = 12,
plotlyOutput("geneplot")
),
column(width = 12,
align = "center",
br(),
htmlOutput("inc")
)#column
)#fluidRow
),#tabPanel
tabPanel("CpG",
br(),
align = "center",
fluidRow(
# column(width = 6,
# plotlyOutput("volcanoplot")
# ),
column(width = 12,
plotlyOutput("geneenrich")
),
column(width = 6,
plotlyOutput("cpgplot")
)
)#fluidRow
)#tabPanel
)#tabsetPanel
)
)
),#ui
server = function(input, output){
CpG_repalce <- eventReactive(input$cpgsearch,
{
pvalueCutoff <- as.numeric(input$pvaluebin)
abslogFCCutoff <- as.numeric(input$logFCbin)
cpgid <- input$cpgbin
### Generate Data for CpGplot
mycpg <- data.frame(Beta_Value=beta[cpgid,],Pheno=pheno,Sample_Name=colnames(beta))
Parameter <- list(mycpg=mycpg,cpgid=cpgid)
})
Gene_repalce <- eventReactive(input$genesearch,
{
pvalueCutoff <- as.numeric(input$pvaluebin)
abslogFCCutoff <- as.numeric(input$logFCbin)
genename <- input$genebin
### Generate Data for Geneplot
mygeneselect=DMP[which(DMP$gene==genename & DMP$adj.P.Val <= pvalueCutoff & abs(DMP$logFC) >= abslogFCCutoff),]
mygeneselect <- mygeneselect[order(mygeneselect$MAPINFO),]
if(class(pheno)=="numeric")
{
cut_group <- as.character(cut(pheno,4))
mygroup <- split(as.data.frame(t(beta[rownames(mygeneselect),])),cut_group)
} else {
mygroup <- split(as.data.frame(t(beta[rownames(mygeneselect),])),pheno)
}
Parameter <- list(mygeneselect=mygeneselect,mygroup=mygroup,genename=genename)
})
Cutoff_repalce <- eventReactive(input$go,
{
gc()
pvalueCutoff <- as.numeric(input$pvaluebin)
abslogFCCutoff <- as.numeric(input$logFCbin)
mydmp <- DMP[which(DMP$adj.P.Val <= pvalueCutoff & abs(DMP$logFC) >= abslogFCCutoff),]
message(dim(mydmp))
### Generate Data for Heatmap
myheatmapdata=beta[rownames(mydmp),]
### Generate Data for cgi Barplot
h.cgi <- rbind(AllProbe=table(as.factor(DMP$cgi)),
HyperProbe=table(as.factor(mydmp$cgi)[mydmp$logFC >= abslogFCCutoff]),
HypoProbe=table(as.factor(mydmp$cgi)[mydmp$logFC <= (-1)*abslogFCCutoff]))
### Generate Data for feature Barplot
h.feature <- rbind(AllProbe=table(as.factor(DMP$feature)),
HyperProbe=table(as.factor(mydmp$feature)[mydmp$logFC >= abslogFCCutoff]),
HypoProbe=table(as.factor(mydmp$feature)[mydmp$logFC <= (-1)*abslogFCCutoff]))
### Generate Data for feature.cgi Barplot
h.feature.cgi <- rbind(AllProbe=table(as.factor(DMP$feat.cgi)),
HyperProbe=table(as.factor(mydmp$feat.cgi)[mydmp$logFC >= abslogFCCutoff]),
HypoProbe=table(as.factor(mydmp$feat.cgi)[mydmp$logFC <= (-1)*abslogFCCutoff]))
### Generate Data for geneenrich Barplot
myallgeneselect=mydmp[mydmp$gene!="",c("gene","adj.P.Val","logFC")]
Parameter <- list(pvalueCutoff=pvalueCutoff,
abslogFCCutoff=abslogFCCutoff,
mydmp=mydmp,
myheatmapdata=myheatmapdata,
h.cgi=h.cgi,
h.feature=h.feature,
h.feature.cgi=h.feature.cgi,
myallgeneselect=myallgeneselect)
})
output$table <- renderDataTable({
if(class(pheno)=="numeric") {
datatable <- Cutoff_repalce()$mydmp[,c("CHR","MAPINFO","gene","feature","cgi",names(DMP)[1:6])]
} else {
datatable <- Cutoff_repalce()$mydmp[,c("CHR","MAPINFO","gene","feature","cgi",names(DMP)[1:9])]
}
datatable <- data.frame(ID=rownames(datatable),datatable)
},options = list(pageLength=20))
output$heatmap <- renderPlotly({
innerheatmap(Cutoff_repalce()$myheatmapdata)
})
output$cgibarplot <- renderPlotly({
innercgibarplot(Cutoff_repalce()$h.cgi)
})
output$featurebarplot <- renderPlotly({
innerfeaturebarplot(Cutoff_repalce()$h.feature)
})
output$featurecgibarplot <- renderPlotly({
innerfeaturecgibarplot(Cutoff_repalce()$h.feature.cgi)
})
output$geneenrich <- renderPlotly({
innergeneenrich(Cutoff_repalce()$myallgeneselect)
})
output$geneplot <- renderPlotly({
innerGenePlot(Gene_repalce()$mygeneselect,Gene_repalce()$mygroup)
})
# output$volcanoplot <- renderPlotly({
# innervolcanoplot(Cutoff_repalce()$mydmp)
# })
output$cpgplot <- renderPlotly({
innercpgplot(CpG_repalce()$mycpg,CpG_repalce()$cpgid)
})
output$inc <- renderUI({
webpage <- tags$iframe(src=paste("https://www.wikigenes.org/e/gene/e/",MatchGeneName[which(MatchGeneName[,1]==Gene_repalce()$genename),2],".html",sep=""),width="60%",height="100%")
})
}
)
runApp(app)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.