Description Usage Arguments Value Author(s) See Also Examples
Estimate differential expression at gene level and differential usage at bin and junction level.
1 | DUreport_DEXSeq(counts, targets, pair, group, minGenReads, minBinReads, minRds,threshold)
|
counts |
An object of class ASpliCounts |
targets |
A dataframe containing sample, bam and condition columns |
pair |
vector of length two, either numeric or character, providing the pair of groups to be compared |
group |
Factorial vector with tags for each sample |
minGenReads |
Default 10 reads |
minBinReads |
Default 5 reads |
minRds |
Default 0.05 |
threshold |
Minimun number of junction. Default 5 |
An ASpliDU object with results at genes
, bins
and junctions
level
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
DEXSeq, edgeR
Accesors: genesDE, binsDU,junctionsDU
Export: writeDU
1 2 3 4 5 6 7 8 9 10 11 12 13 | library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4),
rep("KD",4)))
pair <- c("CT","KD")
du <- DUreport_DEXSeq(counts, targets, pair, group)
writeDU(du, output.dir="only_du")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.