R/makeReducedDims.R

Defines functions .pcaDimRed listBuiltInReducedDims

Documented in listBuiltInReducedDims

#####Function to calculate the reducedDim matrices.


#' @rdname reduceFunctions
#' @param reducedDims a vector of character values indicating the methods of
#'   dimensionality reduction to be performed. Currently only "PCA" is
#'   implemented.
#' @param maxDims Numeric vector of integer giving the number of PC dimensions
#'   to calculate. \code{maxDims} can also take values between (0,1) to indicate
#'   keeping the number of dimensions necessary to account for that proportion
#'   of the variance. \code{maxDims} should be of same length as
#'   \code{reducedDims}, indicating the number of dimensions to keep for each
#'   method (if \code{maxDims} is of length 1, the same number of dimensions
#'   will be used for each).
#' @param ... Values passed on the the 'SingleCellExperiment' method.
#' @details The PCA method uses either \code{prcomp} from the \code{stats}
#'   package or  \code{svds} from the \code{RSpectra} package to perform PCA.
#'   Both are called on \code{t(assay(x))} with \code{center=TRUE} and
#'   \code{scale=TRUE} (i.e. the feature are centered and scaled), so that it is
#'   performing PCA on the correlation matrix of the features.
#' @details Note that this function does not check if such a reduceDim value already exists, and will recalculate (and overwrite) if it does.
#' @return \code{makeReducedDims} returns a \code{\link{SingleCellExperiment}}
#'   containing the calculated dimensionality reduction in the \code{reduceDims}
#'   with names corresponding to the name given in \code{reducedDims}.
#' @examples
#' data(simData)
#' listBuiltInReducedDims()
#' scf<-makeReducedDims(simData, reducedDims="PCA", maxDims=3)
#' scf
#' @export
#' @aliases makeReducedDims,SingleCellExperiment-method makeReducedDims
#' @importFrom matrixStats rowVars
setMethod(
  f = "makeReducedDims",
  signature = "SingleCellExperiment",
  definition = function(object,reducedDims="PCA",maxDims=500,transFun=NULL,isCount=FALSE,whichAssay=1)
  {
    
    ###################
    ##Check user inputs
    ###################
    #check valid options for reducedDims
    validDim<-listBuiltInReducedDims()
    reducedDims<-unique(reducedDims)
    if(length(maxDims)==1) maxDims<-rep(maxDims,length=length(reducedDims))
    if(length(maxDims)!=length(reducedDims)) stop("'maxDims' must be of same length as 'reducedDims'")
    
    ######Check dimensions and valid argument
    for(dr in reducedDims){
      dr<-match.arg(dr,validDim) 
      if(is.na(maxDims) || maxDims>NROW(object) || maxDims > NCOL(object)){
        if(!is.na(maxDims) & (maxDims>NROW(object) || maxDims > NCOL(object)))
          warning("User requested more dimensionality reduction dimensions than the minimimum of number of rows and columns. Will return all dimensions.")
        maxDims<-min(c(NROW(object),NCOL(object)))
      }
      if(maxDims<=0)  stop("the number of reducedDims dimensions must be a value strictly greater than 0")
      
      
    }
    ###################
    ##Clean up data:
    ###################
    #transform data
    x<-transformData(object,transFun=transFun,isCount=isCount,whichAssay=whichAssay)
    #---------
    #Check zero variance genes before doing reducedDims:
    #---------
    varFun<-.matchToStats(x)[["var"]] #does matrixStats::rowVars if x is matrix, otherwise apply with var across rows.
    rowvars <- varFun(x) 
    if(any(rowvars==0)) {
      if(all(rowvars==0)) {
        stop("All features have zero variance.")
      }
      warning("Found features with zero variance.\nMost likely these are features with 0 across all samples.\nThey will be removed from dimensionality reduction step.")
    }
    
    ###################
    ##Do loop over reducedDims values:
    ###################
    currErrors<-vector("character")
    for(kk in seq_along(reducedDims)){
      dr<-reducedDims[[kk]]
      md<-maxDims[[kk]]
      isPct <- md < 1
      #check if already calculated
      #note, currently no way to check if have already done if md<1
      if(dr %in% reducedDimNames(object)){
        if(!isPct & md<=ncol(reducedDim(object,type=dr))) next
      }
      #-------------
      # if add other functions, add if statements here
      if(dr=="PCA") out<-try(.pcaDimRed(x,md=md,isPct=isPct,rowvars=rowvars))
      ##-------
      
      if(!inherits(out,"try-error")) reducedDim(object,reducedDims) <- out
      else{
        currErrors<-c(currErrors,paste("\t",dr,":",out,sep=""))
      }	  
    }
    if(length(currErrors)>0){
      if(length(currErrors)==length(reducedDims)) 
        stop(paste("No dimensionality reduction techniques were successful:",currErrors,sep="\n"))
      else{
        warning(paste("The following dimensionality reduction techniques hit errors:",currErrors,sep="\n"))
      }
    }
    return(object)
    
  }
)
#' @rdname reduceFunctions
#' @export
setMethod(
  f = "makeReducedDims",
  signature = "matrixOrHDF5",
  definition = function(object,...)
  {
    makeReducedDims(SummarizedExperiment(object),...)
  }
)
#' @rdname reduceFunctions
#' @export
setMethod(
  f = "makeReducedDims",
  signature = "SummarizedExperiment",
  definition = function(object,...)
  {
    makeReducedDims(as(object,"SingleCellExperiment"),...)
  }
)
#' @rdname reduceFunctions
#' @export
setMethod(
  f = "makeReducedDims",
  signature = "ClusterExperiment",
  definition = function(object,...)
  {
    if(any(c("transFun","isCount") %in% names(list(...)))) 
      stop("The internally saved transformation function of a ClusterExperiment object must be used when given as input and setting 'transFun' or 'isCount' for a 'ClusterExperiment' is not allowed.")  
    out<-makeReducedDims(as(object,"SingleCellExperiment"),transFun=transformation(object),...)
    return(.addBackSEInfo(newObj=object,oldObj=out))
  }
)

#' @rdname reduceFunctions
#' @export
listBuiltInReducedDims<-function(){c("PCA")}

#' @importFrom BiocSingular runPCA
.pcaDimRed<-function(x,md,isPct,rowvars){	
  tempX <- t(x[which(rowvars>0),])
  if(isPct) {
    prcObj<-BiocSingular::runPCA(tempX,rank=min(dim(tempX)),center=TRUE,scale=TRUE)
    prvar<-prcObj$sdev^2 #variance of each component
    prvar<-prvar/sum(prvar)
    prc<-prcObj$x
    if(NROW(prc) != NCOL(x)) stop("Internal error in coding of principal components.")
    md <- which(cumsum(prvar)>md)[1] #pick first pca coordinate with variance > value
    prc <- prc[,seq_len(md)]
  }
  else {
    prcObj <- BiocSingular::runPCA(tempX, rank=md, center=TRUE, scale=TRUE)
    prc<-prcObj$x
    if(any(md > NROW(prc)))
      stop("Internal error in coding of principal components.")
  }
  return(prc)
}
epurdom/clusterCells documentation built on April 28, 2024, 8:14 p.m.