R/08_background_correction.R

Defines functions correct_background

#' Background-correct and export results
#' @param paths Character vector of paths to store intput, intermediary results, outputs...
#' @param FCS_export if "none", no FCS export. If "concatenated", export one FCS file with all the data. if "split", export the data in the result folder under the subfolder FCS, with each file corresponding to a (subsampled) input file. If "csv", export concatenated background-corrected data to CSV.
#' @param CSV_export Deprecated
#' @param chans vector of backbone channels' names
#' @param transforms_chan named list of logicle-transformations for backbone channels
#' @param transforms_pe named list of logicle-transformations for Infinity channels
#' @param xp Logicle-transformed backbone expression matrix
#' @param xp_scaled Per-well Z-scored Backbone expression matrix
#' @param umap UMAP dimensionality reduction matrix of the Backbone data
#' @param events.code vector of length nrow(xp) specifying from which well each event originates
#' @param preds matrix of imputed data
#' @param sampling boolean vector of length nrow(xp) specifying which events were selected for final imputation
#' @param prediction_colnames vector of column names for the imputed data, a subset of the column names in the preds matrix
#' @param a annotation table generated by infinityFlow:::intialize()
#' @param verbose Verbosity

#' @importFrom utils read.csv
#' @importFrom utils write.csv
#' @importFrom flowCore write.FCS
#' @importFrom flowCore flowFrame
#' @noRd
correct_background <- function(
                            paths,
                            FCS_export,
                            CSV_export,
                            chans=readRDS(file.path(paths["rds"],"chans.Rds")),
                            transforms_chan=readRDS(file.path(paths["rds"],"transforms_chan.Rds")),
                            transforms_pe=readRDS(file.path(paths["rds"],"transforms_pe.Rds")),
                            xp=readRDS(file.path(paths["rds"],"xp.Rds")),
                            xp_scaled=readRDS(file.path(paths["rds"],"xp_transformed_scaled.Rds")),
                            umap=readRDS(file.path(paths["rds"],"umap.Rds")),
                            events.code=readRDS(file.path(paths["rds"],"pe.Rds")),
                            sampling=readRDS(file.path(paths["rds"],"sampling_preds.Rds")),
                            preds=readRDS(file.path(paths["rds"],"predictions.Rds")),
                            prediction_colnames=readRDS(file.path(paths["rds"],"prediction_colnames.Rds")),
                            a=read.csv(paths["annotation"],sep=",",header=TRUE,stringsAsFactors=FALSE),
                            verbose=TRUE
                            ){

    if(verbose){
        message("Background correcting")
    }

    a <- read.csv(paths["annotation"],sep=",",header=TRUE,stringsAsFactors=FALSE)
    rownames(a) <- a[,"file"]
    a <- a[intersect(rownames(a),colnames(preds[[1]])),]
    
    preds_raw <- preds
    
    preds_rawbgc <- lapply(
        preds_raw,
        function(x){
            x[,a$file]
        }
    )
    
    for(i in seq_along(preds_rawbgc)){
        for(file in colnames(preds_rawbgc[[i]])){
            iso <- a[file,"isotype"][1]
            x <- preds_raw[[i]][,iso]
            y <- preds_raw[[i]][,file]
            lm <- lm(y~x)$coefficients
            intercept <- lm[1]
            slope <- lm[2]
            orthogonal_residuals <- (-slope*x+y-intercept)/sqrt(slope^2+1)
            preds_rawbgc[[i]][,file] <- orthogonal_residuals
        }
    }

    saveRDS(preds_rawbgc,file=file.path(paths["rds"],"predictions_backgroundcorrected.Rds"))
    
    ## ##################
    ## Exporting Phenograph / BGC / UMAPs
    ## ##################

    if(verbose){
        message("\tTransforming background-corrected predictions. (Use logarithm to visualize)")
    }
    ## Preparing data for display using log transform
    preds_rawbgc_linear <- lapply(
        preds_rawbgc,function(x){
            apply(x,2,function(x){
                10^(x-min(x))
            })
        }
    )
    
    ## Adding uncorrected data (isotypes and autofluorescence)
    ## I don't think this does anything anymore
    for(i in seq_along(preds_rawbgc_linear)){
        preds_rawbgc_linear[[i]] <- cbind(
            preds_rawbgc_linear[[i]],
            preds_raw[[i]][,setdiff(colnames(preds[[i]]),c(colnames(preds_rawbgc_linear[[i]]),chans)),drop=FALSE]
        )
        preds_rawbgc[[i]] <- cbind(
            preds_rawbgc[[i]],
            preds_raw[[i]][,setdiff(colnames(preds[[i]]),c(colnames(preds_rawbgc[[i]]),chans)),drop=FALSE]
        )
    }
    
    preds_rawbgc_linear <- lapply(
        preds_rawbgc_linear,
        function(x){
            x[,rownames(a)]
        }
    )
    preds_rawbgc <- lapply(
        preds_rawbgc,
        function(x){
            x[,rownames(a)]
        }
    )
    for(x in names(preds_rawbgc_linear)){
        colnames(preds_rawbgc_linear[[x]]) <- paste0(a[colnames(preds_rawbgc_linear[[x]]),"target"],".",x,"_bgc")
        colnames(preds_rawbgc[[x]]) <- paste0(a[colnames(preds_rawbgc[[x]]),"target"],".",x,"_bgc")
        preds_rawbgc_linear[[x]] <- preds_rawbgc_linear[[x]][,order(colnames(preds_rawbgc_linear[[x]]))]
        preds_rawbgc[[x]] <- preds_rawbgc[[x]][,order(colnames(preds_rawbgc[[x]]))]
    }

    preds_rawbgc_linear <- do.call(cbind,preds_rawbgc_linear)
    preds_rawbgc <- do.call(cbind,preds_rawbgc)

    preds_rawbgc <- preds_rawbgc[,sort(colnames(preds_rawbgc))]
    preds_rawbgc_linear <- preds_rawbgc_linear[,sort(colnames(preds_rawbgc_linear))]
    
    preds_rawbgc_linear <- cbind(xp[sampling,],preds_rawbgc_linear,minmax_scale(umap))
    preds_rawbgc <- cbind(xp_scaled[sampling,],preds_rawbgc,minmax_scale(umap))
    
    unique_pes <- unique(events.code)
    PE_id <- vapply(events.code[sampling],match,table=unique_pes, FUN.VALUE = 1L)

    preds_rawbgc_linear <- cbind(preds_rawbgc_linear,PE_id=PE_id)
    preds_rawbgc <- cbind(preds_rawbgc,PE_id=PE_id)

    if("csv" %in% FCS_export){
        if(verbose){
            message("\t","Exporting as CSV")
        }
        dir.create(file.path(paths["output"],"FCS_background_corrected/"),showWarnings=FALSE,recursive=TRUE)
        write.csv(as.data.frame(preds_rawbgc_linear),row.names=FALSE,file=file.path(paths["output"],"predicted_data_background_corrected.csv"))
    }

    if("split" %in% FCS_export){
        if(verbose){
            message("\t","Exporting FCS files (1 per well)")
        }
        dir.create(file.path(paths["output"],"FCS_background_corrected/","split"),recursive=TRUE,showWarnings=FALSE)
        FCS_list <- split_matrix(preds_rawbgc_linear,events.code[sampling])
        FCS_list <- lapply(FCS_list,function(x){
            x <- flowFrame(x)
            x@parameters$desc <- as.character(x@parameters$desc)
            x@parameters$name <- as.character(x@parameters$name)
            generate_description(x)
        })
        lapply(
            names(FCS_list),
            function(x){
                invisible(write.FCS(FCS_list[[x]],filename=file.path(paths["output"],"FCS_background_corrected/","split",paste0(sub(".fcs","",x),"_target_",gsub("/","-",a[x,"target"]),".fcs"))))
            }
        )   
    }

    if("concatenated" %in% FCS_export){
        if(verbose){
            message("\t","Exporting concatenated FCS file")
        }
        FCS <- flowFrame(preds_rawbgc_linear)
        FCS@parameters$desc <- as.character(FCS@parameters$desc)
        FCS@parameters$name <- as.character(FCS@parameters$name)
        FCS <- generate_description(FCS)
        dir.create(file.path(paths["output"],"FCS_background_corrected/","concatenated"),recursive=TRUE,showWarnings=FALSE)
        invisible(write.FCS(FCS,filename=file.path(paths["output"],"FCS_background_corrected","concatenated","concatenated_results_background_corrected.fcs")))
    }

    saveRDS(preds_rawbgc,file.path(paths["rds"],"predictions_bgc_cbound.Rds"))
    preds_rawbgc
}
ebecht/infinityFlow documentation built on Jan. 31, 2024, 11:31 p.m.