# Tests for normalisation methods
context("test expected usage")
test_that("normaliseExprs does not fail on input with zero-variance features", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
expect_that(normaliseExprs(example_sceset, method = "none",
feature_set = 1:100), is_a("SCESet"))
})
test_that("we can compute normalised expression values with TMM method", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
keep_gene <- rowSums(counts(example_sceset)) > 0
example_sceset <- example_sceset[keep_gene,]
example_sceset <- normaliseExprs(example_sceset, method = "TMM",
feature_set = 1:100)
expect_that(example_sceset, is_a("SCESet"))
})
test_that("we can compute normalised expression values with RLE method", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
keep_gene <- rowSums(counts(example_sceset)) > 0
example_sceset <- example_sceset[keep_gene,]
example_sceset <- normaliseExprs(example_sceset, method = "RLE",
feature_set = 1:100)
expect_that(example_sceset, is_a("SCESet"))
})
# test_that("we can compute normalised expression values with upperquartile
# method", {
# data("sc_example_counts")
# data("sc_example_cell_info")
# pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
# example_sceset <- newSCESet(countData = sc_example_counts + 1,
# phenoData = pd)
# keep_gene <- rowSums(counts(example_sceset)) > 0
# example_sceset <- example_sceset[keep_gene,]
# example_sceset <- example_sceset[
# matrixStats::rowVars(counts(example_sceset)) > 0,]
#
# example_sceset <- normaliseExprs(example_sceset, method = "upperquartile",
# feature_set = 1:200)
#
# expect_that(example_sceset, is_a("SCESet"))
# })
test_that("we can compute normalised expression values with none method", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
keep_gene <- rowSums(counts(example_sceset)) > 0
example_sceset <- example_sceset[keep_gene,]
example_sceset <- normaliseExprs(example_sceset, method = "none",
feature_set = 1:100)
expect_that(example_sceset, is_a("SCESet"))
})
test_that("we can compute normalised expression values with a design matrix", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
keep_gene <- rowSums(counts(example_sceset)) > 0
example_sceset <- calculateQCMetrics(example_sceset[keep_gene,],
feature_controls = 1:40)
design <- model.matrix(~example_sceset$Cell_Cycle +
example_sceset$pct_counts_top_200_features +
example_sceset$pct_dropout +
example_sceset$total_features)
example_sceset <- normaliseExprs(example_sceset, method = "none",
design = design)
expect_that(example_sceset, is_a("SCESet"))
example_sceset <- normaliseExprs(example_sceset, method = "TMM",
design = design)
expect_that(example_sceset, is_a("SCESet"))
example_sceset <- normaliseExprs(example_sceset, method = "RLE",
design = design)
expect_that(example_sceset, is_a("SCESet"))
})
test_that("we can compute normalise the object", {
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
keep_gene <- rowSums(counts(example_sceset)) > 0
example_sceset <- example_sceset[keep_gene,]
example_sceset <- normaliseExprs(example_sceset, method = "none",
feature_set = 1:100)
## normalize
example_sceset <- normalize(example_sceset)
expect_that(example_sceset, is_a("SCESet"))
## normalise
example_sceset <- normalise(example_sceset)
expect_that(example_sceset, is_a("SCESet"))
## check error if no size factors
sizeFactors(example_sceset) <- NULL
expect_warning(normalize(example_sceset), "size factors were not defined")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.