R/optimzinb.R

Defines functions zinb.loglik.regression.gradient zinb.loglik.regression zinb.loglik.dispersion.gradient zinb.loglik.dispersion zinb.loglik optim_fun0noT optim_funnoT zinb.regression.parseModel zinbOptimizeDispersion

Documented in zinbOptimizeDispersion zinb.regression.parseModel

# Find a single dispersion parameter for a count by 1-dimensional optimization of the likelihood
# Given a vector of count, this function computes a single dispersion parameter
# (log(theta)) the counts under a zero-inflated negative binomial
#' (ZINB) model. The ZINB distribution is parametrized by three
#' parameters: the mean value and the dispersion of the negative binomial
#' distribution, and the probability of the zero component.
#'
#' @param Y the vector of counts
#' @param mu the vector mean  of the negative binomial
#' @param logitPi the vector of logit of the probabilities of the zero component
#' @param n length of the returned vector
#' @examples
#' n <- 10
#' mu <- seq(10,50,length.out=n)
#' logitPi <- rnorm(1)
#' zeta <- rnorm(1)
#' Y <- rnbinom(n=n, size=exp(zeta), mu=mu)
#' learn2count:::zinbOptimizeDispersion ( mu, logitPi,Y,n)
zinbOptimizeDispersion <- function( mu, logitPi,Y,n) {

  g <- optimize(f=zinb.loglik.dispersion, Y=Y, mu=mu,
                logitPi=logitPi, maximum=TRUE,interval=c(-100,100))

  zeta.op <- g$maximum

  zeta.ot <- try(optim( par=zeta.op, fn=zinb.loglik.dispersion ,
                        gr=zinb.loglik.dispersion.gradient,mu=mu,
                        logitPi=logitPi,Y=Y,control=list(fnscale=-1,trace=0),
                        method="BFGS")$par,silent = TRUE)
  if (!is(zeta.ot, "try-error")){
    zeta <- zeta.ot
  }else{
    zeta <- zeta.op
  }


  zeta <- rep((zeta),n)
  zeta
}

# Copied on 5/14/2019 from log1pexp of the copula package (v. 0.999.19) by
# Marius Hofert, Ivan Kojadinovic, Martin Maechler, Jun Yan,
# Johanna G. Neslehova
# Copied here to avoid dependence on gsl which causes troubles.
log1pexp <- function (x, c0 = -37, c1 = 18, c2 = 33.3)
{
  if (has.na <- any(ina <- is.na(x))) {
    y <- x
    x <- x[ok <- !ina]
  }
  r <- exp(x)
  if (any(i <- c0 < x & (i1 <- x <= c1)))
    r[i] <- log1p(r[i])
  if (any(i <- !i1 & (i2 <- x <= c2)))
    r[i] <- x[i] + 1/r[i]
  if (any(i3 <- !i2))
    r[i3] <- x[i3]
  if (has.na) {
    y[ok] <- r
    y
  }
  else r
}




#' Parse ZINB regression model
#'
#' Given the parameters of a ZINB regression model, this function parses the
#' model and computes the vector of log(mu), logit(pi), and the dimensions of
#' the different components of the vector of parameters.
#'
#' @param alpha the vectors of parameters c(a.mu, a.pi) concatenated
#' @param A.mu matrix of the model (default=empty)
#' @param A.pi matrix of the model (default=empty)
#' @return A list with slots \code{logMu}, \code{logitPi}, \code{dim.alpha} (a
#'   vector of length 2 with the dimension of each of the vectors \code{a.mu},
#'   \code{a.pi}  in \code{alpha}), and \code{start.alpha} (a vector
#'   of length 2 with the starting indices of the 2 vectors in \code{alpha})
zinb.regression.parseModel <- function(alpha, A.mu,A.pi) {

  n <- nrow(A.mu)
  logMu <-0
  logitPi <- 0
  dim.alpha <- rep(0,2)
  start.alpha <- rep(NA,2)
  i <- 0

  j <- ncol(A.mu)
  if (j>0) {
    logMu <- logMu + A.mu %*% alpha[(i+1):(i+j)]
    dim.alpha[1] <- j
    start.alpha[1] <- i+1
    i <- i+j
  }

  j <- ncol(A.pi)
  if (j>0) {
    logitPi <- logitPi - A.pi %*% alpha[(i+1):(i+j)]
    dim.alpha[2] <- j
    start.alpha[2] <- i+1
    i <- i+j
  }


  return(list(logMu=logMu, logitPi=logitPi, dim.alpha=dim.alpha,
              start.alpha=start.alpha))
}

#####################
#########optimal functions

###zinb1: there are structures both in $mu$ and in $pi$
optim_funnoT <- function(beta_mu, gamma_pi, Y, X_mu, zeta, n) {
    optim( fn=zinb.loglik.regression,
           gr=zinb.loglik.regression.gradient,
           par=c(beta_mu, gamma_pi),
           Y=Y, A.mu=cbind(rep(1,n),X_mu),
           A.pi=cbind(rep(1,n),X_mu),
           C.theta=matrix(zeta, nrow = n, ncol = 1),
           control=list(fnscale=-1,trace=0),
           method="BFGS")$par
}
###zinb0: there are only structures in $mu$
optim_fun0noT <- function(beta_mu, gamma_pi, Y, X_mu, zeta, n) {
    optim( fn=zinb.loglik.regression,
           gr=zinb.loglik.regression.gradient,
           par=c(beta_mu, gamma_pi),
           Y=Y, A.mu=cbind(rep(1,n),X_mu),
           A.pi= matrix(rep(1,n),n,1),
           C.theta=matrix(zeta, nrow = n, ncol = 1),
           control=list(fnscale=-1,trace=0),
           method="BFGS")$par
}

zinb.loglik <- function(Y, mu, theta, logitPi) {

  # log-probabilities of counts under the NB model
  logPnb <- suppressWarnings(dnbinom(Y, size = theta, mu = mu, log = TRUE))

  # contribution of zero inflation
  lognorm <- - log1pexp(logitPi)

  # log-likelihood
  sum(logPnb[Y>0]) + sum(logPnb[Y==0] + log1pexp(logitPi[Y==0] -
                                                           logPnb[Y==0])) + sum(lognorm)
}

zinb.loglik.dispersion <- function(zeta, Y, mu, logitPi) {
  zinb.loglik(Y, mu, exp(zeta), logitPi)
}

zinb.loglik.dispersion.gradient <- function(zeta, Y, mu, logitPi) {
  theta <- exp(zeta)

  # Check zeros in the count vector
  Y0 <- Y <= 0
  Y1 <- Y > 0
  has0 <- !is.na(match(TRUE,Y0))
  has1 <- !is.na(match(TRUE,Y1))

  grad <- 0
  if (has1) {
    grad <- grad + sum( theta * (digamma(Y[Y1] + theta) - digamma(theta) +
                                   zeta - log(mu[Y1] + theta) + 1 -
                                   (Y[Y1] + theta)/(mu[Y1] + theta) ) )
  }

  if (has0) {
    logPnb <- suppressWarnings(dnbinom(0, size = theta, mu = mu[Y0],
                                       log = TRUE))
    grad <- grad + sum( theta * (zeta - log(mu[Y0] + theta) + 1 -
                                   theta/(mu[Y0] + theta)) / (1+exp(logitPi[Y0] - logPnb)))
    # *exp(- copula::log1pexp( -logPnb + logitPi[Y0])))

  }

  grad
}

zinb.loglik.regression <- function(alpha, Y,
                                   A.mu = matrix(nrow=length(Y), ncol=0),
                                   A.pi = matrix(nrow=length(Y), ncol=0),
                                   C.theta = matrix(0, nrow=length(Y), ncol=1)) {

  # Parse the model
  r <- zinb.regression.parseModel(alpha=alpha,
                                  A.mu = A.mu,
                                  A.pi = A.pi)

  # Call the log likelihood function
  z <- zinb.loglik(Y, exp(r$logMu), exp(C.theta), r$logitPi)
  #return z
  z
}

zinb.loglik.regression.gradient <- function(alpha, Y,
                                            A.mu = matrix(nrow=length(Y), ncol=0),
                                            A.pi = matrix(nrow=length(Y), ncol=0),
                                            C.theta = matrix(0, nrow=length(Y), ncol=1)) {

  # Parse the model
  r <- zinb.regression.parseModel(alpha=alpha,
                                  A.mu = A.mu,
                                  A.pi = A.pi)

  theta <- exp(C.theta)
  mu <- exp(r$logMu)
  n <- length(Y)

  # Check zeros in the count matrix
  Y0 <- Y <= 0
  Y1 <- Y > 0
  has0 <- !is.na(match(TRUE,Y0))
  has1 <- !is.na(match(TRUE,Y1))

  # Check what we need to compute,
  # depending on the variables over which we optimize
  need.wres.mu <- r$dim.alpha[1] >0
  need.wres.pi <- r$dim.alpha[2] >0

  # Compute some useful quantities
  muz <- 1/(1+exp(-r$logitPi))
  clogdens0 <- dnbinom(0, size = theta[Y0], mu = mu[Y0], log = TRUE)

  lognorm <- -r$logitPi - log1pexp(-r$logitPi)

  dens0 <- muz[Y0] + exp(lognorm[Y0] + clogdens0)

  # Compute the partial derivatives we need
  ## w.r.t. mu
  if (need.wres.mu) {
    wres_mu <- numeric(length = n)
    if (has1) {
      wres_mu[Y1] <- Y[Y1] - mu[Y1] *
        (Y[Y1] + theta[Y1])/(mu[Y1] + theta[Y1])
    }
    if (has0) {

      wres_mu[Y0] <- -exp(-log(dens0) + lognorm[Y0] + clogdens0 +
                            C.theta[Y0] - log(mu[Y0] + theta[Y0]) +
                            log(mu[Y0]))
    }
  }

  ## w.r.t. pi
  if (need.wres.pi) {
    wres_pi <- numeric(length = n)
    if (has1) {

      wres_pi[Y1] <-  muz[Y1]

    }
    if (has0) {

      wres_pi[Y0] <- -(1 - exp(clogdens0)) * muz[Y0] * (1-muz[Y0]) / dens0
    }
  }

  # Make gradient
  grad <- numeric(0)

  ## w.r.t. a_mu
  if (r$dim.alpha[1] >0) {
    istart <- r$start.alpha[1]
    iend <- r$start.alpha[1]+r$dim.alpha[1]-1
    grad <- c(grad , colSums(wres_mu * A.mu))
  }

  ## w.r.t. a_pi
  if (r$dim.alpha[2] >0) {
    istart <- r$start.alpha[2]
    iend <- r$start.alpha[2]+r$dim.alpha[2]-1
    grad <- c(grad , colSums(wres_pi * A.pi) )
  }



  grad
}
drisso/learn2count documentation built on July 15, 2024, 11:13 p.m.