R/library_scaling.R

Defines functions .scale_chr hic_scale

Documented in hic_scale

#' Perform library scaling on a hicexp object
#' 
#' @param hicexp A hicexp object.
#' @details This function will perform library scaling 
#'     on a hicexp object. Scaling is performed 
#'     separately for each chromosome. This is an 
#'     alternative normalization method to the
#'     cyclic loess and fastlo methods also
#'     provided in multiHiCcompare. Use this normalization
#'     method if for some reason you do not want to remove
#'     trends in the data and only want to normalize based
#'     on library size.
#' @importFrom data.table rbindlist
#' @export
#' @return A hicexp object.
#' @examples 
#' data("hicexp2")
#' hicexp2 <- hic_scale(hicexp2)
#' 
hic_scale <- function(hicexp) {
  # check if data already normalized
  if (normalized(hicexp)) {
    stop("Data has already been normalized.")
  }
  # extract hic_table
  tab <- hic_table(hicexp)
  # split up by chromosome
  tab <- split(tab, f = tab$chr)
  # scale each chr
  new_tab <- lapply(tab, .scale_chr)
  # recombine
  new_tab <- data.table::rbindlist(new_tab)
  slot(hicexp, "hic_table") <- new_tab
  slot(hicexp, "normalized") <- TRUE
  return(hicexp)
}



# internal function for scaling each chr
.scale_chr <- function(tab) {
  # extract IF matrix
  IFs <- as.matrix(tab[, -c("chr", "region1", "region2", "D")])
  # get min library size
  min.lib <- min(colSums(IFs)) 
  # perform scaling based on min lib size
  scaled_IFs <- apply(IFs, 2, function(x) {
    scale.factor <- sum(x) / min.lib
    new.IF <- x / scale.factor
    return(new.IF)
  })
  # recombine table
  new_table <- cbind(tab[, c('chr', 'region1', 'region2', 'D')], scaled_IFs)
  return(new_table)
}
dozmorovlab/multiHiCcompare documentation built on April 23, 2022, 9:56 a.m.