R/GenotypeBreaks.R

Defines functions genotype.binom genotype.fisher GenotypeBreaks RefineBreaks mergeGR

Documented in genotype.binom GenotypeBreaks genotype.fisher

#' Set of functions to genotype regions in between localized breakpoints
#'
#' Each defined region is given one of the three states ('ww', 'cc' or 'wc')
#' Consecutive regions with the same state are collapsed
#'
#' Function \code{GenotypeBreaks} exports states of each region defined by breakpoints.
#' Function \code{genotype.fisher} assigns states to each region based on expected counts of Watson and Crick reads.
#' Function \code{genotype.binom} assigns states to each region based on expected counts of Watson and Crick reads.
#'
#' @name genotyping
#' @author David Porubsky, Ashley Sanders, Aaron Taudt
#' @examples
#'## Get an example file 
#'exampleFolder <- system.file("extdata", "example_results", package="breakpointRdata")
#'exampleFile <- list.files(exampleFolder, full.names=TRUE)[1]
#'## Load the file 
#'breakpoint.objects <- get(load(exampleFile))
#'## Genotype regions between breakpoints
#'gbreaks <- GenotypeBreaks(breaks=breakpoint.objects$breaks, fragments=breakpoint.objects$fragments)
#'
NULL

## Helper functions ##
## Refine breakpoint regions to the highest deltaW in a given region
mergeGR <- function(gr) {
  gr <- sort(gr)
  new.gr <- GRanges(seqnames=as.character(seqnames(gr))[1], ranges=IRanges(start=min(start(gr)), end=max(end(gr))))
  return(new.gr)
}

RefineBreaks <- function(gr) {
  maxDeltaW <- max(gr$deltaW)
  new.gr <- gr[gr$deltaW == maxDeltaW]
  new.gr <- mergeGR(new.gr)
  new.gr$deltaW <- maxDeltaW
  return(new.gr)
}

#' @describeIn genotyping Genotypes breakpoint defined regions.
#' @param breaks A \code{\link{GRanges-class}} object with breakpoint coordinates.
#' @param fragments A \code{\link{GRanges-class}} object with read fragments.
#' @param background The percent (e.g. 0.05 = 5\%) of background reads allowed for WW or CC genotype calls.
#' @param minReads The minimal number of reads between two breaks required for genotyping.
#' @param genoT A method ('fisher' or 'binom') to genotype regions defined by a set of breakpoints. 
#' @return A \code{\link{GRanges-class}} object with genotyped breakpoint coordinates.
#' @importFrom S4Vectors endoapply
#' @export
GenotypeBreaks <- function(breaks, fragments, background=0.05, minReads=10, genoT='fisher') {
    if (length(breaks)==0) {
        stop("argument 'breaks' is empty")
    }
  
    breakrange.list <- GenomicRanges::GRangesList()
    seqlevels(breakrange.list) <- GenomeInfoDb::seqlevels(breaks)
    for (chrom in unique(seqnames(breaks))) {
          
        # create ranges between the breakpoints -> start and stops in a dataframe, use this to genotype between
        breaks.strand <- breaks[seqnames(breaks) == chrom]
        strand(breaks.strand) <- '*'
        # Remove the non-used seqlevels
        breaks.strand <- GenomeInfoDb::keepSeqlevels(breaks.strand, value=chrom)
        breakrange <- GenomicRanges::gaps(breaks.strand)
        breakrange <- breakrange[strand(breakrange)=='*']
        
        ## pull out reads of each line, and genotype in the fragments
        strand(breakrange) <- '-'
        breakrange$Ws <- GenomicRanges::countOverlaps(breakrange, fragments)
        strand(breakrange) <- '+'
        breakrange$Cs <- GenomicRanges::countOverlaps(breakrange, fragments)
        strand(breakrange) <- '*'
        breakrange$readNo <- breakrange$Ws + breakrange$Cs
        
        if (genoT == 'fisher') {
            ## bestFit genotype each region by Fisher Exact Test
            fisher <- lapply(seq_along(breakrange), function(x) genotype.fisher(cReads=breakrange$Cs[x], wReads=breakrange$Ws[x], roiReads=breakrange$readNo[x], background=background, minReads=minReads))
            fisher <- do.call(cbind, fisher)
            breakrange$genoT <- unlist(fisher[1,])
            breakrange$pVal <- unlist(fisher[2,])
        } else if (genoT == 'binom') {    
            ## bestFit genotype each region by binomial test
            binom.p <- lapply(seq_along(breakrange), function(x) genotype.binom(cReads=breakrange$Cs[x], wReads=breakrange$Ws[x], background=background, minReads=minReads, log=TRUE))
            binom.p <- do.call(cbind, binom.p)
            breakrange$genoT <- unlist(binom.p[1,])
            breakrange$pVal <- unlist(binom.p[2,])
        } else {
            stop("Wrong argument 'genoT', genoT='fisher|binom'")
        }
        
        breakrange <- breakrange[!is.na(breakrange$genoT)]
      
        ## remove break if genotype is the same on either side of it
        equal.on.either.side <- c(breakrange$genoT[-length(breakrange)] == breakrange$genoT[-1], TRUE)
        breakrange.new <- breakrange[!equal.on.either.side]
        start(breakrange.new) <- end(breakrange[!equal.on.either.side])
        end(breakrange.new) <- start(breakrange[which(!equal.on.either.side)+1])
        breakrange.new$genoT <- paste(breakrange$genoT[!equal.on.either.side], breakrange$genoT[which(!equal.on.either.side)+1], sep='-')
      
        mcols(breakrange.new)[c('Ws','Cs','readNo','pVal')] <- NULL
  
        breakrange.list[[chrom]] <- breakrange.new
        
    }
    breakrange.new <- unlist(breakrange.list, use.names=FALSE)
    
    if (length(breakrange.new)) {
        ## Refine breakpoint regions to the highest deltaW in the given region
        hits <- GenomicRanges::findOverlaps(breakrange.new, breaks)
        ToRefine <- split(breaks[S4Vectors::subjectHits(hits)], S4Vectors::queryHits(hits))
        refined <- unlist(S4Vectors::endoapply(ToRefine, RefineBreaks), use.names = FALSE)
        ranges(breakrange.new) <- ranges(refined)
        breakrange.new$deltaW <- refined$deltaW
        return(breakrange.new)
    } else {
        return(breakrange.new <- NULL)
    }  
}


#' Assign states to any given region using Fisher Exact Test.
#' @param cReads Number of Crick reads.
#' @param wReads Number of Watson reads.
#' @param roiReads Total number of Crick and Watson reads.
#' @inheritParams GenotypeBreaks
#' @importFrom stats fisher.test
#' @return A \code{list} with the $bestFit and $pval.
#' @author David Porubsky, Aaron Taudt
#' @export
#' @examples 
#'## Get Crick and Watson read counts
#'## Crick read count
#'cReads <- 30
#'## Watson read count
#'wReads <- 5  
#'genotype.fisher(cReads = cReads, wReads = wReads, roiReads = cReads + wReads, background = 0.05, minReads = 10)
#'
genotype.fisher <- function(cReads, wReads, roiReads, background=0.05, minReads=10) {
    ## FISHER EXACT TEST
    result <- list(bestFit=NA, pval=NA)
    if (length(roiReads)==0) {
        return(result)
    }
    if (is.na(roiReads)) {
        return(result)
    }
    if ( roiReads >= minReads ) {
        m <- matrix(c(cReads, wReads, round(roiReads*(1-background)), round(roiReads*background)), ncol=2, byrow=TRUE, dimnames=list(case=c('real', 'reference'), reads=c('Cs','Ws')))
        CCpVal <- stats::fisher.test(m, alternative="greater")[[1]]
        m <- matrix(c(cReads, wReads, round(roiReads*0.5), round(roiReads*0.5)), ncol=2, byrow=TRUE, dimnames=list(case=c('real', 'reference'), reads=c('Cs','Ws')))
        WCpVal <- 1 - stats::fisher.test(m, alternative="two.sided")[[1]]
        m <- matrix(c(wReads, cReads, round(roiReads*(1-background)), round(roiReads*background)), ncol=2, byrow=TRUE, dimnames=list(case=c('real', 'reference'), reads=c('Ws','Cs')))
        WWpVal <- stats::fisher.test(m, alternative="greater")[[1]]

        pVal <- c(wc=WCpVal, cc=CCpVal, ww=WWpVal)
        result <- list(bestFit=names(pVal)[which.min(pVal)], pval=min(pVal))
        return(result)

    } else {
        return(result)
    }
}

#' Assign states to any given region using binomial test.
#' @param log Set to \code{TRUE} if you want to calculate probability in log space.
#' @inheritParams GenotypeBreaks
#' @inheritParams genotype.fisher
#' @importFrom stats dbinom
#' @return A \code{list} with the $bestFit and $pval.
#' @author David Porubsky
#' @export
#' @examples 
#'## Get Crick and Watson read counts
#'## Crick read count
#'cReads <- 30
#'## Watson read count
#'wReads <- 5  
#'genotype.binom(cReads = cReads, wReads = wReads, background = 0.05, minReads = 10, log = TRUE)
#'
genotype.binom <- function(wReads, cReads, background=0.05, minReads=10, log=FALSE) {
    ## Set parameters
    roiReads <- wReads + cReads
    alpha <- background
    ## Calculate binomial probabilities for given read counts
    result <- list(bestFit=NA, pval=NA)
    if (length(roiReads)==0) {
        return(result)
    }
    if (is.na(roiReads)) {
        return(result)
    }
    if ( roiReads >= minReads ) {
        ## Test if a given read counts are WW
        WWpVal <- stats::dbinom(wReads, size = roiReads, prob = 1-alpha, log = log)
        ## Test if a given read counts are CC
        CCpVal <- stats::dbinom(wReads, size = roiReads, prob = alpha, log = log)
        ## Test if a given read counts are WC
        WCpVal <- stats::dbinom(wReads, size = roiReads, prob = 0.5, log = log)
        ## Export results
        pVal <- c(wc = WCpVal, cc = CCpVal, ww = WWpVal)
        result <- list(bestFit = names(pVal)[which.max(pVal)], pval = max(pVal))
        return(result)
    } else { 
        return(result)
    }
}
daewoooo/BreakPointR documentation built on May 8, 2024, 10:43 p.m.