#' HySime
#'
#' Evalutes number of cell types presented in mixture using (HySime) hyperspectral signal identification by minimum error
#'
#' Original paper is J. M. Bioucas-Dias and J. M. P. Nascimento, "Hyperspectral Subspace Identification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 8, pp. 2435-2445, Aug. 2008.
#'
#' Based on MATLAB original code from http://www.lx.it.pt/~bioucas/code.htm
#'
#' @param Y gene expression matrix, columns are genes, rows are samples
#' @param W estimated noise matrix
#' @param Rn estimated noise correlation matrix
#' @param verbose verbosity, default valie is FALSE
#'
#' @return list
#' @export
#'
#' @examples
hysime <- function(Y, W, Rn, verbose=FALSE) {
L <- nrow(Y)
N <- ncol(Y)
Lw <- nrow(W)
Nw <- ncol(W)
d1 <- nrow(Rn)
d2 <- ncol(Rn)
if (Lw != L || Nw != N) {
stop("Noise matrix size are not in agreement")
} else if (d1 != d2 || d1 != L) {
stop("Bad correlation matrix")
}
if (verbose) message("Computing the correlation matrices")
X <- Y - W
Ry <- Y %*% t(Y) / N
Rx <- X %*% t(X) / N
if (verbose) message("Computing the eigen vectors of the signal correlation matrix")
svdRes <- svd(Rx)
dx <- svdRes$d
E <- svdRes$u
if (verbose) message("Estimating number of endmembers")
Rn <- Rn + (sum(diag(Rx)) / L / 10^10) * diag(nrow=L)
Py <- diag(t(E) %*% Ry %*% E)
Pn <- diag(t(E) %*% Rn %*% E)
costF <- -Py + 2 * Pn
kf <- sum(costF < 0)
ascOrder <- order(costF)
Ek <- E[, ascOrder[1:kf]]
if (verbose) message(sprintf("Estimated signal subspace dimension in k = %d", kf))
PySort <- sum(diag(Ry)) - cumsum(Py[ascOrder])
PnSort <- 2 * cumsum(Pn[ascOrder])
costFSort <- PySort + PnSort
if (verbose) {
require(ggplot2)
ind <- 1:(L - 1)
toPlot <- data.frame(indice = rep(ind, 3),
error = c(costFSort[ind], PySort[ind], PnSort[ind]),
error_type = c(rep("MSE", L-1), rep("Proj Error", L-1), rep("Noise Power", L-1)))
plot <- ggplot2::ggplot(data=toPlot, aes(x=indice, y=error, group=error_type, color=error_type)) +
ggplot2::geom_point() + ggplot2::geom_line() +
ggplot2::scale_y_log10() + ggplot2::theme_bw()
return(list(k=kf, E=Ek, plot=plot))
}
return(list(k=kf, E=Ek, plot=NULL))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.