#' @title plot_peaks
#'
#' @description This funciton plots the peak identified within
#' chromatography.
#'
#' @details This function plots individual peaks selected by signal
#' processing and expanded with a regression to allow the user to validate the
#' selected signal processing parameters.
#'
#' @param Autotuner An Autotuner objected containing sample specific raw
#' data.
#' @param boundary UI input value that defines the boundary around the peak to
#' visualize it.
#' @param peak A Numeric index obtained from UI that indicates which peak
#' should be visualized.
#' @param showLegend A boolean dictating if a legend should be shown or not.
#' Resolves issue where legend can cover chromatographic data
#'
#' @import mzR
#'
#' @return This function outputs plots that are meant to go into the peakVis
#' UI.
#'
#' @examples
#' Autotuner <- readRDS(system.file("extdata/Autotuner.rds",
#' package="Autotuner"))
#' plot_peaks(Autotuner = Autotuner, boundary = 100, peak = 1)
#'
#' @export
plot_peaks <- function(Autotuner, boundary = 10, peak, showLegend = TRUE) {
if(class(Autotuner) != "Autotuner") {
stop("Check the input of parameter Autotuner.")
}
# extracting relevant values from input args ------------------------------
factorCol <- getAutoFactorCol(Autotuner)
metadata <- getAutoMetadata(Autotuner)
peak_difference <- getAutoPeak_difference(Autotuner)
peak_table <- getAutoPeak_table(Autotuner)
peak_difference <- peak_difference
peak_difference <- peak_difference[peak_difference$index == peak,]
#peak_table <- peak_table
sample_names <- unlist(metadata[,factorCol])
sample_names <- paste(sample_names, seq_along(sample_names))
colors <- seq_along(unique(peak_table$Sample))
row <- 1
peak_counter <- 1
checkPeaks <- c(peak_difference$cur_row[1], peak_difference$next_row)
sample_index <- peak_table$Sample[checkPeaks]
## ploting the peaks
lapply(seq_along(checkPeaks), function(row_index) {
## renaming info for clarity
current_row <- checkPeaks[row_index]
sample_index <- peak_table$Sample[current_row]
## extracting relevant info to plot figures
bdd_names <- peak_table[current_row,]
bdd_names <- bdd_names[,grep("name", colnames(bdd_names))]
time <- getAutoTime(Autotuner)[[sample_index]]
intensity <- getAutoIntensity(Autotuner)[[sample_index]]
bdd_points <- which(names(time) %in% unlist(bdd_names))
peak_interval <- c(0,0)
if((bdd_points[1] - boundary) < 1) {
peak_interval[1] <- 1
} else {
peak_interval[1] <- bdd_points[1]-boundary
}
if((bdd_points[2]+boundary) > length(time)) {
peak_interval[2] <- length(time)
} else {
peak_interval[2] <- bdd_points[2]+boundary
}
peak_interval <- peak_interval[1]:peak_interval[2]
if(row_index == 1) {
upper_bdd <- peak_difference$max_intensity[row] +
peak_difference$max_intensity[row]/
log(peak_difference$max_intensity[row])
plot(x = time[peak_interval], y = intensity[peak_interval],
type = "l",
xlab = "Time (s)",
ylab = "Intensity",
main = paste("Max Peak Width:",
signif(max(peak_difference$Max_width)), "(s)"),
col = colors[peak_table$Sample[current_row]],
ylim = c(0, upper_bdd))
abline(v = time[bdd_points[1]], lty = 5,
col = colors[peak_table$Sample[current_row]])
abline(v = time[bdd_points[2]], lty = 5,
col = colors[peak_table$Sample[current_row]])
} else {
lines(time[peak_interval],
intensity[peak_interval],
col = colors[peak_table$Sample[current_row]])
abline(v = time[bdd_points[1]], lty = 5,
col = colors[peak_table$Sample[current_row]])
abline(v = time[bdd_points[2]], lty = 5,
col = colors[peak_table$Sample[current_row]])
}
}) # end of plotting function
sampleIds <- peak_table$Sample[checkPeaks]
if(showLegend == TRUE){
legend("topleft",
legend = sample_names[sampleIds],
col = colors[sampleIds],
cex = 0.75,
fill = which(sample_names %in%
sample_names[peak_table$Sample[checkPeaks]]))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.