# All the code in this file needs to be copied to your Shiny app, and you need
# to call `withBusyIndicatorUI()` and `withBusyIndicatorServer()` in your app.
# You can also include the `appCSS` in your UI, as the example app shows.
# =============================================
# Set up a button to have an animated loading indicator and a checkmark
# for better user experience
# Need to use with the corresponding `withBusyIndicator` server function
withBusyIndicatorUI <- function(button) {
id <- button[["attribs"]][["id"]]
div(
`data-for-btn` = id,
button,
span(
class = "btn-loading-container",
hidden(
img(src = "ajax-loader-bar.gif", class = "btn-loading-indicator"),
icon("check", class = "btn-done-indicator")
)
),
hidden(
div(class = "btn-err",
div(icon("exclamation-circle"),
tags$b("Error: "),
span(class = "btn-err-msg")
)
)
)
)
}
# does the same thing as above, but put the animation inside the button label
actionButtonBusy <- function(buttonId, buttonTitle) {
tags$div(
`data-for-btn` = buttonId,
actionButton(
buttonId,
tags$div(
buttonTitle,
tags$span( class = "btn-loading-container", style = "float:right",
hidden(
img(src = "ajax-loader-bar.gif", class = "btn-loading-indicator"),
icon("check", class = "btn-done-indicator")
)
)
)
),
hidden(
div(class = "btn-err",
div(icon("exclamation-circle"),
tags$b("Error: "),
span(class = "btn-err-msg")
)
)
)
)
}
# Call this function from the server with the button id that is clicked and the
# expression to run when the button is clicked
withBusyIndicatorServer <- function(buttonId, expr) {
# UX stuff: show the "busy" message, hide the other messages, disable the button
loadingEl <- sprintf("[data-for-btn=%s] .btn-loading-indicator", buttonId)
doneEl <- sprintf("[data-for-btn=%s] .btn-done-indicator", buttonId)
errEl <- sprintf("[data-for-btn=%s] .btn-err", buttonId)
shinyjs::disable(buttonId)
shinyjs::show(selector = loadingEl)
shinyjs::hide(selector = doneEl)
shinyjs::hide(selector = errEl)
on.exit({
shinyjs::enable(buttonId)
shinyjs::hide(selector = loadingEl)
})
# Try to run the code when the button is clicked and show an error message if
# an error occurs or a success message if it completes
tryCatch({
value <- expr
shinyjs::show(selector = doneEl)
shinyjs::delay(2000, shinyjs::hide(selector = doneEl, anim = TRUE, animType = "fade",
time = 0.5))
value
}, error = function(err){
errorFunc(err, buttonId)
})
}
# When an error happens after a button click, show the error
errorFunc <- function(err, buttonId) {
message(paste0(date(), " !!! ", err))
shinyalert("Error", text = err$message, type = "error")
errEl <- sprintf("[data-for-btn=%s] .btn-err", buttonId)
errElMsg <- sprintf("[data-for-btn=%s] .btn-err-msg", buttonId)
errMessage <- gsub("^ddpcr: (.*)", "\\1", err$message)
shinyjs::html(html = errMessage, selector = errElMsg)
shinyjs::show(selector = errEl, anim = TRUE, animType = "fade")
}
appCSS <- "
.btn-loading-container {
margin-left: 10px;
font-size: 1.2em;
}
.btn-done-indicator {
color: green;
}
.btn-err {
margin-top: 10px;
color: red;
}
"
# Accordion - formatting for collapsible section in an accordion
# Use example:
# HTML('<div class="accordion" id="myAccordion">
# <div class="panel">'),
# HTML(accordionSection("1","2","myAccordion")),
# # panel content code,
# HTML('</div>'),
# HTML('</div>
# </div>')
accordionSection <- function(collapseId, panelTitle, accordionId) {
return(
paste(
'<button type="button" class="btn btn-default btn-block" ',
'data-toggle="collapse" data-target="#', collapseId, '" data-parent="#', accordionId, '">',
panelTitle,
'</button>
<div id="', collapseId, '" class="collapse">',
sep = ""
)
)
}
# show or hide all collapses in a list
allSections <- function(action, collapseList) {
if (action == "hide"){
for (i in collapseList){
shinyjs::hide(i, anim = TRUE)
}
}
else if (action == "show"){
for (i in collapseList){
shinyjs::show(i, anim = TRUE)
}
}
}
withConsoleRedirect <- function(expr) {
options(warn = 1)
tmpSinkfileName <- tempfile()
tmpFD <- file(tmpSinkfileName, open = "wt")
sink(tmpFD, type="output", split = TRUE)
sink(tmpFD, type = "message")
result <- expr
sink(type = "message")
sink()
console.out <- readChar(tmpSinkfileName, file.info(tmpSinkfileName)$size)
unlink(tmpSinkfileName)
if (length(console.out) > 0) {
insertUI(paste0("#", "console"), where = "beforeEnd",
ui = tags$p(paste0(console.out, "\n", collapse = ""))
)
}
result
}
withConsoleMsgRedirect <- function(expr, msg="Please wait. See console log for progress.") {
withCallingHandlers(
expr = {
.loadOpen(msg)
tryCatch(
{
result <- expr
},
error = function(e) {
message(paste0(date(), " !!! ", e))
shinyalert("Error", text = e$message, type = "error",
callbackR = .loadClose())
}
)
.loadClose()
},
message = function(m) {
shinyjs::html(id = "consoleText", html = m$message, add = TRUE)
}
)
}
#-----------#
# Gene Sets #
#-----------#
formatGeneSetList <- function(setListStr) {
setListArr <- strsplit(setListStr, "\n")[[1]]
setListList <- list()
for (set in setListArr) {
setListList[[set]] <- set
}
return(setListList)
}
formatGeneSetDBChoices <- function(dbIDs, dbCats) {
splitIds = strsplit(dbIDs, " ")
choices <- list()
for (i in seq_along(splitIds)) {
entry <- splitIds[i][[1]]
choices[[sprintf("%s - %s", entry, dbCats[i])]] <- entry
}
return(choices)
}
#--------------#
# QC/Filtering #
#--------------#
combineQCMPlots <- function(input, output, combineP, sampleList, plots, plotIds, statuses) {
if (length(sampleList) == 1) {
# Plot output code from https://gist.github.com/wch/5436415/
output[[plotIds$QCMetrics]] <- renderUI({
plot_output_list <- lapply(names(plots), function(subScore) {
subPlotID <- paste0("QCMetrics", subScore)
plotOutput(subPlotID)
})
# Convert the list to a tagList - this is necessary for the list of items
# to display properly.
do.call(tagList, plot_output_list)
})
for (subScore in names(plots)) {
# Need local so that each item gets its own number. Without it, the value
# of i in the renderPlot() will be the same across all instances, because
# of when the expression is evaluated.
local({
my_subScore <- subScore
subPlotID <- paste0("QCMetrics", subScore)
output[[subPlotID]] <- renderPlot(plots[[my_subScore]])
})
}
} else {
output[[plotIds$QCMetrics]] <- renderUI({
plot_output_list <- lapply(names(plots$Violin), function(subScore) {
subPlotID <- paste0("QCMetrics", subScore)
if (is.null(input$subScore)){
plotOutput(subPlotID)
}
})
# Convert the list to a tagList - this is necessary for the list of items
# to display properly.
do.call(tagList, plot_output_list)
})
for (subScore in names(plots$Violin)) {
# Need local so that each item gets its own number. Without it, the value
# of i in the renderPlot() will be the same across all instances, because
# of when the expression is evaluated.
local({
my_subScore <- subScore
subPlotID <- paste0("QCMetrics", my_subScore)
output[[subPlotID]] <- renderPlot(plots$Violin[[my_subScore]])
})
}
}
}
combineQCSubPlots <- function(output, combineP, algo, sampleList, plots, plotIds, statuses) {
if (length(sampleList) == 1) {
# Plot output code from https://gist.github.com/wch/5436415/
output[[plotIds[[algo]]]] <- renderUI({
plot_output_list <- lapply(names(plots), function(subScore) {
subPlotID <- paste(c(algo, subScore), collapse="")
plotOutput(subPlotID)
})
# Convert the list to a tagList - this is necessary for the list of items
# to display properly.
do.call(tagList, plot_output_list)
})
for (subScore in names(plots)) {
# Need local so that each item gets its own number. Without it, the value
# of i in the renderPlot() will be the same across all instances, because
# of when the expression is evaluated.
local({
my_subScore <- subScore
subPlotID <- paste(c(algo, my_subScore), collapse="")
output[[subPlotID]] <- renderPlot(plots[[my_subScore]])
})
}
} else {
tabsetID <- paste0(algo, "Tabs") # for the tabsetPanel within a tab
mainPlotID <- paste0(plotIds[[algo]], "Main")
if (!is.null(plots$Violin)) {
output[[plotIds[[algo]]]] <- renderUI(plotOutput(mainPlotID))
output[[mainPlotID]] <- renderPlot(plots$Violin)
}
for (i in seq_along(sampleList)) {
local({
s <- sampleList[[i]]
sID <- paste(c(algo, s, "Tab"), collapse = "")
if (is.null(statuses[[algo]][[s]])) {
if (i == 1) {
appendTab(tabsetID, tabPanel(s, uiOutput(sID)), select = TRUE)
} else {
appendTab(tabsetID, tabPanel(s, uiOutput(sID)), select = FALSE)
}
}
# Plot output code from https://gist.github.com/wch/5436415/
output[[sID]] <- renderUI({
plot_output_list <- lapply(names(plots$Sample[[s]]), function(subScore) {
subPlotID <- paste(c(algo, s, subScore), collapse="")
plotOutput(subPlotID)
})
# Convert the list to a tagList - this is necessary for the list of items
# to display properly.
do.call(tagList, plot_output_list)
})
for (subScore in names(plots$Sample[[s]])) {
# Need local so that each item gets its own number. Without it, the value
# of i in the renderPlot() will be the same across all instances, because
# of when the expression is evaluated.
local({
my_subScore <- subScore
subPlotID <- paste(c(algo, s, my_subScore), collapse="")
output[[subPlotID]] <- renderPlot(plots$Sample[[s]][[my_subScore]])
})
}
})
}
}
}
arrangeQCPlots <- function(inSCE, input, output, algoList, sampleList, plotIDs, statuses, redDimName) {
uniqueSampleNames <- unique(sampleList)
combineP <- "none"
for (a in algoList) {
if (a == "scDblFinder") {
dcPlots <- plotScDblFinderResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, dcPlots, plotIDs, statuses)
} else if (a == "cxds") {
cxPlots <- plotCxdsResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, cxPlots, plotIDs, statuses)
} else if (a == "bcds") {
bcPlots <- plotBcdsResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, bcPlots, plotIDs, statuses)
} else if (a == "cxds_bcds_hybrid") {
cxbcPlots <- plotScdsHybridResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, cxbcPlots, plotIDs, statuses)
} else if (a == "decontX") {
dxPlots <- plotDecontXResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, dxPlots, plotIDs, statuses)
} else if (a == "soupX") {
soupXPlots <- plotSoupXResults(inSCE, combinePlot = combineP,
sample = sampleList)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, soupXPlots, plotIDs, statuses)
} else if (a == "QCMetrics") {
qcmPlots <- plotRunPerCellQCResults(inSCE, sample = sampleList, combinePlot = combineP)
combineQCMPlots(input, output, combineP, uniqueSampleNames, qcmPlots, plotIDs, statuses)
} else if (a == "scrublet") {
sPlots <- plotScrubletResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, sPlots, plotIDs, statuses)
return(sPlots)
} else if (a == "doubletFinder") {
dfPlots <- plotDoubletFinderResults(inSCE, combinePlot = combineP, sample = sampleList,
reducedDimName = redDimName)
combineQCSubPlots(output, combineP, a, uniqueSampleNames, dfPlots, plotIDs, statuses)
}
}
}
findOverlapping <- function(arr1, arr2) {
filter <- vector()
for (x in arr1) {
if (x %in% arr2) {
filter <- c(filter, TRUE)
} else {
filter <- c(filter, FALSE)
}
}
return(arr1[filter])
}
addToColFilterParams <- function(name, categorial, criteria, criteriaGT, criteriaLT, id, paramsReactive) {
threshStr <- ""
if (categorial) {
threshArr <- list()
for (c in criteria) {
threshArr <- c(threshArr, sprintf("%s == '%s'", name, c))
}
threshStr <- paste(threshArr, collapse = " | ")
} else {
if (is.null(criteriaGT)) {
threshStr <- sprintf("%s < %.5f", name, criteriaLT)
} else if (is.null(criteriaLT)) {
threshStr <- sprintf("%s > %.5f", name, criteriaGT)
} else {
threshStr <- sprintf("%s > %.5f & %s < %.5f", name, criteriaGT, name, criteriaLT)
}
}
entry <- list(col=name, param=threshStr, id=id)
paramsReactive$params <- c(paramsReactive$params, list(entry))
paramsReactive$id_count <- paramsReactive$id_count + 1
}
addToRowFilterParams <- function(name, X, Y, id, paramsReactive) {
entry <- reactiveValues(row=name, X=X, Y=Y, id=id)
paramsReactive$params <- c(paramsReactive$params, list(entry))
paramsReactive$id_count <- paramsReactive$id_count + 1
}
formatFilteringCriteria <- function(paramsReactive) {
criteria = list()
for (entry in paramsReactive) {
criteria <- c(criteria, entry$param)
}
return(criteria)
}
addRowFiltersToSCE <- function(inSCE, paramsReactive) {
for (entry in paramsReactive$params) {
rowName <- paste0(entry$row, "_filter")
a <- assay(inSCE, entry$row)
vec <- rowSums(a > entry$X) > entry$Y
rowData(inSCE)[[rowName]] <- vec
entry$param <- sprintf("%s == T", rowName)
}
return(inSCE)
}
#helper function to add notification bar while code is executing
spinnerShape <- "orbit"
spinnerColor <- "gainsboro"
.loadOpen <- function(message) {
shinybusy::show_modal_spinner(
spin = spinnerShape,
color = spinnerColor,
text = message
) # show the notification spinner
shinyjs::runjs("var intervalVarAutoScrollConsole = setInterval(startAutoScroll, 1000); Shiny.onInputChange('logDataAutoScrollStatus', intervalVarAutoScrollConsole);")
shinyjs::show(id = "consolePanel") # open console
}
.loadClose <- function(){
shinyjs::hide(id = "consolePanel") # close console
shinybusy::remove_modal_spinner() #closes the notification spinner
}
#' Usually numericInput returns NA when not entering anything in UI, but
#' directly using NA causes error. Similarly, character inputs (selectionInput)
#' returns empty string "", which should usually be changed to NULL.
#' @return if not identified as empty inputs, returns as is; otherwise,
#' changeTo to `changeTo`
handleEmptyInput <- function(x,
type = c("auto", "numeric", "character"),
changeTo = NULL) {
type = match.arg(type)
if (type == "auto") {
if (is.numeric(x) || is.na(x)) {
type <- "numeric"
} else if (is.character(x)) {
type <- "character"
}
}
if (type == "numeric" & is.na(x)) {
x <- changeTo
} else if (type == "character" & x == "") {
x <- changeTo
}
return(x)
}
getTypeByMat <- function(inSCE, matName) {
if (matName %in% assayNames(inSCE)) {
return("assay")
} else if (matName %in% altExpNames(inSCE)) {
return("altExp")
} else if (matName %in% reducedDimNames(inSCE)) {
return("reducedDim")
} else {
for (i in altExpNames(inSCE)) {
if (matName %in% reducedDimNames(altExp(inSCE, i))) {
return(c("reducedDim", i))
}
}
return()
}
}
#' Generate distinct colors for all categorical col/rowData entries.
#' Character columns will be considered as well as all-integer columns. Any
#' column with all-distinct values will be excluded.
#' @param inSCE \linkS4class{SingleCellExperiment} inherited object.
#' @param axis Choose from \code{"col"} or \code{"row"}.
#' @param colorGen A function that generates color code vector by giving an
#' integer for the number of colors. Alternatively,
#' \code{\link{rainbow}}. Default \code{\link{distinctColors}}.
#' @return A \code{list} object containing distinct colors mapped to all
#' possible categorical entries in \code{rowData(inSCE)} or
#' \code{colData(inSCE)}.
#' @author Yichen Wang
dataAnnotationColor <- function(inSCE, axis = NULL,
colorGen = distinctColors){
if(!is.null(axis) && axis == 'col'){
data <- SummarizedExperiment::colData(inSCE)
} else if(!is.null(axis) && axis == 'row'){
data <- SummarizedExperiment::rowData(inSCE)
} else {
stop('please specify "col" or "row"')
}
nColor <- 0
for(i in names(data)){
if(length(grep('counts', i)) > 0){
next
}
column <- stats::na.omit(data[[i]])
if(is.numeric(column)){
if(!all(as.integer(column) == column)){
# Temporarily the way to tell whether numeric categorical
next
}
}
if(is.factor(column)){
uniqLevel <- levels(column)
} else {
uniqLevel <- unique(column)
}
if(!length(uniqLevel) == nrow(data)){
# Don't generate color for all-uniq annotation (such as IDs/symbols)
nColor <- nColor + length(uniqLevel)
}
}
if (nColor == 0) {
return(list())
}
allColors <- colorGen(nColor)
nUsed <- 0
allColorMap <- list()
for(i in names(data)){
if(length(grep('counts', i)) > 0){
next
}
column <- stats::na.omit(data[[i]])
if(is.numeric(column)){
if(!all(as.integer(column) == column)){
# Temporarily the way to tell whether numeric categorical
next
}
}
if(is.factor(column)){
uniqLevel <- levels(column)
} else {
uniqLevel <- unique(column)
}
if(!length(uniqLevel) == nrow(data)){
subColors <- allColors[(nUsed+1):(nUsed+length(uniqLevel))]
names(subColors) <- uniqLevel
allColorMap[[i]] <- subColors
nUsed <- nUsed + length(uniqLevel)
}
}
return(allColorMap)
}
# Pass newly generated QC metric variable from vals$original to vals$counts, the
# latter might be a subset.
passQCVar <- function(sce.original, sce.counts, algoList) {
vars <- c()
for (a in algoList) {
if (a == "scDblFinder") {
new <- grep("scDblFinder", names(colData(sce.original)), value = TRUE)
} else if (a == "cxds") {
new <- grep("scds_cxds", names(colData(sce.original)), value = TRUE)
} else if (a == "bcds") {
new <- grep("scds_bcds", names(colData(sce.original)), value = TRUE)
} else if (a == "cxds_bcds_hybrid") {
new <- grep("scds_hybrid", names(colData(sce.original)), value = TRUE)
} else if (a == "decontX") {
new <- grep("decontX", names(colData(sce.original)), value = TRUE)
} else if (a == "soupX") {
new <- grep("soupX", names(colData(sce.original)), value = TRUE)
} else if (a == "scrublet") {
new <- grep("scrublet", names(colData(sce.original)), value = TRUE)
} else if (a == "doubletFinder") {
new <- grep("doubletFinder", names(colData(sce.original)), value = TRUE)
} else if (a == "QCMetrics") {
new <- c("total", "sum", "detected")
new <- c(new, grep("percent.top", names(colData(sce.original)), value = TRUE))
new <- c(new, grep("mito_", names(colData(sce.original)), value = TRUE))
new <- c(new, grep("^subsets_.+_sum$", names(colData(sce.original)), value = TRUE))
new <- c(new, grep("^subsets_.+_detected$", names(colData(sce.original)), value = TRUE))
new <- c(new, grep("^subsets_.+_percent$", names(colData(sce.original)), value = TRUE))
}
vars <- c(vars, new)
}
sce.original <- sce.original[rownames(sce.counts), colnames(sce.counts)]
colData(sce.counts)[vars] <- colData(sce.original)[vars]
return(sce.counts)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.