R/doubletFinder_doubletDetection.R

Defines functions .doubletFinder_v3 .find.pK .modelHomotypic .kurtosis .skewness .bimodality_coefficient .summarizeSweep runDoubletFinder .runDoubletFinder .paramSweep .parallel_paramSweep

Documented in runDoubletFinder

## Original code from DoubletFinder package
## (https://github.com/chris-mcginnis-ucsf/DoubletFinder)

.parallel_paramSweep <- function(n, n.real.cells, real.cells, pK, pN, data,
                                 orig.commands, PCs, sct, verbose, seed) {
  sweep.res.list <- list()
  list.ind <- 0
  
  ## Make merged real-artifical data
  if (verbose) {
    message(date(), " ...   Creating artificial doublets for pN = ",
            pN[n] * 100, "%")
  }
  n_doublets <- ceiling(n.real.cells / (1 - pN[n]) - n.real.cells)
  real.cells1 <- sample(real.cells, n_doublets, replace = TRUE)
  real.cells2 <- sample(real.cells, n_doublets, replace = TRUE)
  doublets <- (data[, real.cells1] + data[, real.cells2]) / 2
  colnames(doublets) <- paste("X", seq(n_doublets), sep = "")
  data_wdoublets <- cbind(data, doublets)
  
  ## Pre-process Seurat object
  if (sct == FALSE) {
    if (verbose) {
      message(date(), " ...   Creating Seurat object")
    }
    seu_wdoublets <- Seurat::CreateSeuratObject(counts = data_wdoublets)
    
    if (verbose) {
      message(date(), " ...   Normalizing Seurat object")
    }
    seu_wdoublets <- Seurat::NormalizeData(
      seu_wdoublets,
      normalization.method = orig.commands$NormalizeData.RNA@params$normalization.method,
      scale.factor = orig.commands$NormalizeData.RNA@params$scale.factor,
      margin = orig.commands$NormalizeData.RNA@params$margin,
      verbose = verbose
    )
    
    if (verbose) {
      message(date(), " ...   Finding variable genes")
    }
    seu_wdoublets <- Seurat::FindVariableFeatures(
      seu_wdoublets,
      selection.method = orig.commands$FindVariableFeatures.RNA$selection.method,
      loess.span = orig.commands$FindVariableFeatures.RNA$loess.span,
      clip.max = orig.commands$FindVariableFeatures.RNA$clip.max,
      mean.function = orig.commands$FindVariableFeatures.RNA$mean.function,
      dispersion.function = orig.commands$FindVariableFeatures.RNA$dispersion.function,
      num.bin = orig.commands$FindVariableFeatures.RNA$num.bin,
      binning.method = orig.commands$FindVariableFeatures.RNA$binning.method,
      nfeatures = orig.commands$FindVariableFeatures.RNA$nfeatures,
      mean.cutoff = orig.commands$FindVariableFeatures.RNA$mean.cutoff,
      dispersion.cutoff = orig.commands$FindVariableFeatures.RNA$dispersion.cutoff,
      verbose = verbose
    )
    
    if (verbose) {
      message(date(), " ...   Scaling data")
    }
    seu_wdoublets <- Seurat::ScaleData(
      seu_wdoublets,
      features = orig.commands$ScaleData.RNA$features,
      model.use = orig.commands$ScaleData.RNA$model.use,
      do.scale = orig.commands$ScaleData.RNA$do.scale,
      do.center = orig.commands$ScaleData.RNA$do.center,
      scale.max = orig.commands$ScaleData.RNA$scale.max,
      block.size = orig.commands$ScaleData.RNA$block.size,
      min.cells.to.block = orig.commands$ScaleData.RNA$min.cells.to.block,
      verbose = verbose
    )
    
    if (verbose) {
      message(date(), " ...   Running PCA")
    }
    seu_wdoublets <- Seurat::RunPCA(
      seu_wdoublets,
      features = orig.commands$ScaleData.RNA$features,
      npcs = length(PCs),
      rev.pca = orig.commands$RunPCA.RNA$rev.pca,
      weight.by.var = orig.commands$RunPCA.RNA$weight.by.var,
      seed.use = seed,
      verbose = FALSE
    )
  }
  
  if (sct == TRUE) {
    if (verbose) {
      message(date(), " ...   Creating Seurat object")
    }
    seu_wdoublets <- Seurat::CreateSeuratObject(counts = data_wdoublets)
    
    if (verbose) {
      message(date(), " ...   Running SCTransform")
    }
    seu_wdoublets <- Seurat::SCTransform(seu_wdoublets)
    
    if (verbose) {
      message(date(), " ...   Running PCA")
    }
    seu_wdoublets <- Seurat::RunPCA(seu_wdoublets,
                                    npcs = length(PCs), seed.use = seed,
                                    verbose = verbose
    )
  }
  
  ## Compute PC distance matrix
  if (verbose) {
    message(date(), " ...   Calculating PC distance matrix")
  }
  nCells <- ncol(seu_wdoublets)
  pca.coord <- Seurat::Reductions(seu_wdoublets, "pca")@cell.embeddings[, PCs]
  #seu_wdoublets <- NULL
  rm(seu_wdoublets)
  gc()
  dist.mat <- fields::rdist(pca.coord)[, seq(n.real.cells)]
  
  ## Pre-order PC distance matrix prior to iterating across pK
  ## for pANN computations
  if (verbose) {
    message(date(), " ...   Defining neighborhoods")
  }
  
  for (i in seq(n.real.cells)) {
    dist.mat[, i] <- order(dist.mat[, i])
  }
  
  ## Trim PC distance matrix for faster manipulations
  ind <- round(nCells * max(pK)) + 5
  dist.mat <- dist.mat[seq(ind), ]
  
  ## Compute pANN across pK sweep
  
  if (verbose) {
    message(date(), " ...   Computing pANN across all pK")
  }
  for (k in seq_along(pK)) {
    if (verbose) {
      message(date(), " ...   pK = ", pK[k])
    }
    pk.temp <- round(nCells * pK[k])
    pANN <- as.data.frame(matrix(0L, nrow = n.real.cells, ncol = 1))
    colnames(pANN) <- "pANN"
    rownames(pANN) <- real.cells
    list.ind <- list.ind + 1
    
    for (i in seq(n.real.cells)) {
      neighbors <- dist.mat[2:(pk.temp + 1), i]
      pANN$pANN[i] <- length(which(neighbors > n.real.cells)) / pk.temp
    }
    
    sweep.res.list[[list.ind]] <- pANN
  }
  
  return(sweep.res.list)
}

.paramSweep <- function(seu, PCs = seq(10), sct = FALSE,
                        verbose = FALSE, num.cores, seed) {
  ## Set pN-pK param sweep ranges
  pK <- c(0.0005, 0.001, 0.005, seq(0.01, 0.3, by = 0.01))
  pN <- seq(0.05, 0.3, by = 0.05)
  ## Remove pK values with too few cells
  min.cells <- round(nrow(seu[[]]) / (1 - 0.05) - nrow(seu[[]]))
  pK.test <- round(pK * min.cells)
  pK <- pK[which(pK.test >= 1)]
  
  ## Extract pre-processing parameters from original data analysis workflow
  orig.commands <- seu@commands
  
  ## Down-sample cells to 10000 (when applicable) for computational effiency
  if (nrow(seu[[]]) > 10000) {
    real.cells <- rownames(seu[[]])[sample(seq(nrow(seu[[]])),
                                           10000, replace = FALSE)]
    data <- Seurat::GetAssayData(seu, slot = "counts", 
                                 assay = "RNA")[, real.cells]
    n.real.cells <- ncol(data)
  }
  
  if (ncol(seu) <= 10000) {
    real.cells <- colnames(seu)
    data <- Seurat::GetAssayData(seu, slot = "counts", assay = "RNA")
    n.real.cells <- ncol(data)
  }
  ## Iterate through pN, computing pANN vectors at varying pK
  # no_cores <- detectCores()-1
  if (is.null(num.cores)) {
    num.cores <- 1
  }
  
  if (num.cores > 1) {
    cl <- parallel::makeCluster(num.cores)
    
    output2 <- withr::with_seed(
      seed,
      parallel::mclapply(as.list(seq_along(pN)),
                         FUN = .parallel_paramSweep,
                         n.real.cells,
                         real.cells,
                         pK,
                         pN,
                         data,
                         orig.commands,
                         PCs,
                         sct, mc.cores = num.cores,
                         verbose = verbose,
                         seed = seed,
                         mc.set.seed = FALSE
      )
    )
    parallel::stopCluster(cl)
  } else {
    output2 <- lapply(as.list(seq_along(pN)),
                      FUN = .parallel_paramSweep,
                      n.real.cells,
                      real.cells,
                      pK,
                      pN,
                      data,
                      orig.commands,
                      PCs,
                      sct,
                      seed = seed,
                      verbose = verbose
    )
  }
  
  ## Write parallelized output into list
  sweep.res.list <- list()
  list.ind <- 0
  for (i in seq_along(output2)) {
    for (j in seq_along(output2[[i]])) {
      list.ind <- list.ind + 1
      sweep.res.list[[list.ind]] <- output2[[i]][[j]]
    }
  }
  ## Assign names to list of results
  name.vec <- NULL
  for (j in seq_along(pN)) {
    name.vec <- c(name.vec, paste("pN", pN[j], "pK", pK, sep = "_"))
  }
  names(sweep.res.list) <- name.vec
  return(sweep.res.list)
  
}

.runDoubletFinder <- function(counts, seuratPcs, seuratRes, formationRate,
                              seuratNfeatures, verbose = FALSE,
                              nCores = NULL, seed = 12345) {
  
  ## Convert to sparse matrix if not already in that format
  counts <- .convertToMatrix(counts)
  colnames(counts) <- gsub("_", "-", colnames(counts))
  
  seurat <- suppressWarnings(Seurat::CreateSeuratObject(
    counts = counts,
    project = "seurat", min.features = 0
  ))
  seurat <- Seurat::NormalizeData(
    object = seurat,
    normalization.method = "LogNormalize", scale.factor = 10000,
    verbose = verbose
  )
  seurat <- Seurat::FindVariableFeatures(seurat,
                                         selection.method = "vst",
                                         nfeatures = seuratNfeatures,
                                         verbose = verbose
  )
  
  allGenes <- rownames(seurat)
  seurat <- Seurat::ScaleData(seurat, features = allGenes, verbose = verbose)
  
  numPc <- min(nrow(Seurat::GetAssayData(seurat, slot = "scale.data", 
                                         assay = "RNA")) - 1, 
               50)
  seurat <- Seurat::RunPCA(seurat,
                           features =
                             Seurat::VariableFeatures(object = seurat),
                           npcs = numPc, verbose = verbose, seed.use = seed
  )
  seurat <- Seurat::FindNeighbors(seurat, dims = seuratPcs, verbose = verbose)
  seurat <- Seurat::FindClusters(seurat,
                                 resolution = seuratRes,
                                 verbose = verbose,
                                 random.seed = seed
  )
  invisible(sweepResListSeurat <- .paramSweep(seurat,
                                              PCs = seuratPcs,
                                              sct = FALSE,
                                              num.cores = nCores,
                                              verbose = verbose,
                                              seed = seed
  ))
  sweepStatsSeurat <- .summarizeSweep(sweepResListSeurat,
                                      GT = FALSE
  )
  bcmvnSeurat <- .find.pK(sweepStatsSeurat)
  pkOptimal <- as.numeric(as.matrix(bcmvnSeurat$pK[
    which.max(bcmvnSeurat$MeanBC)
  ]))
  #annotations <- seurat[[]]$seurat_clusters
  #homotypicProp <- .modelHomotypic(annotations)
  nExpPoi <- round(formationRate * ncol(seurat))
  seurat <- .doubletFinder_v3(seurat,
                              PCs = seuratPcs,
                              pN = 0.25,
                              pK = pkOptimal,
                              nExp = nExpPoi,
                              reuse.pANN = FALSE,
                              sct = FALSE,
                              verbose = FALSE
  )
  names(seurat@meta.data)[6] <- "doubletFinderAnnScore"
  names(seurat@meta.data)[7] <- "doubletFinderLabel"
  return(seurat)
}

#' @title Generates a doublet score for each cell via doubletFinder
#' @description Uses doubletFinder to determine cells within the dataset
#'  suspected to be doublets.
#' @param inSCE inSCE A \linkS4class{SingleCellExperiment} object.
#' @param sample Character vector or colData variable name. Indicates which 
#' sample each cell belongs to. Default \code{NULL}.
#' @param useAssay  A string specifying which assay in the SCE to use. Default 
#' \code{"counts"}.
#' @param seed Seed for the random number generator, can be set to \code{NULL}. 
#' Default \code{12345}.
#' @param seuratNfeatures Integer. Number of highly variable genes to use.
#' Default \code{2000}.
#' @param seuratPcs Numeric vector. The PCs used in seurat function to
#' determine number of clusters. Default \code{1:15}.
#' @param seuratRes Numeric vector. The resolution parameter used in Seurat,
#' which adjusts the number of clusters determined via the algorithm. Default 
#' \code{1.5}.
#' @param formationRate Doublet formation rate used within algorithm. Default 
#' \code{0.075}.
#' @param nCores Number of cores used for running the function. Default 
#' \code{NULL}.
#' @param verbose Boolean. Wheter to print messages from Seurat and 
#' DoubletFinder. Default \code{FALSE}.
#' @return \linkS4class{SingleCellExperiment} object containing the
#' \code{doublet_finder_doublet_score} variable in \code{colData} slot.
#' @seealso \code{\link{runCellQC}}, \code{\link{plotDoubletFinderResults}}
#' @examples
#' data(scExample, package = "singleCellTK")
#' sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
#' sce <- runDoubletFinder(sce)
#' @export
#' @importFrom SummarizedExperiment colData colData<- assayNames assayNames<-
#' @importFrom SingleCellExperiment reducedDim<-
runDoubletFinder <- function(inSCE,
                             sample = NULL,
                             useAssay = "counts",
                             seed = 12345,
                             seuratNfeatures = 2000,
                             seuratPcs = seq(15),
                             seuratRes = 1.5,
                             formationRate = 0.075,
                             nCores = NULL,
                             verbose = FALSE) {
  
  argsList <- mget(names(formals()), sys.frame(sys.nframe()))
  argsList <- argsList[!names(argsList) %in% c("inSCE")]
  argsList$packageVersion <- "2.0.2"
  tempSCE <- inSCE
  #assayNames(inSCE)[which(useAssay %in% assayNames(inSCE))] <- "counts"
  #useAssay <- "counts"
  
  sample <- .manageCellVar(inSCE, var = sample)
  if (is.null(sample)) {
    sample <- rep(1, ncol(inSCE))
  }
  
  message(date(), " ... Running 'doubletFinder'")
  
  #doubletScore <- rep(NA, ncol(inSCE))
  #doubletLabel <- rep(NA, ncol(inSCE))
  #allSampleNumbers <- sort(unique(sample))
  
  for (res in seuratRes) {
    output <- S4Vectors::DataFrame(
      row.names = colnames(inSCE),
      doubletFinder_doublet_score = numeric(ncol(inSCE)),
      doubletFinder_doublet_label = character(ncol(inSCE))
    )
    umapDims <- matrix(ncol = 2,
                       nrow = ncol(inSCE))
    rownames(umapDims) = colnames(inSCE)
    colnames(umapDims) = c("UMAP_1", "UMAP_2")
    
    ## Loop through each sample and run doubletFinder
    samples <- unique(sample)
    
    for (s in samples) {
      sceSampleInd <- sample == s
      sceSample <- inSCE[, sceSampleInd]
      mat <- SummarizedExperiment::assay(sceSample, i = useAssay)
      if (length(seuratPcs) > ncol(mat)) {
        seuratPcs <- seq(ncol(mat))
      }
      withr::with_seed(seed, {
        result <- .runDoubletFinder(
          counts = mat,
          seuratPcs = seuratPcs,
          seuratRes = res,
          seuratNfeatures = seuratNfeatures,
          formationRate = formationRate,
          nCores = nCores,
          verbose = verbose,
          seed = seed
        )
      })
      
      result <- suppressMessages(Seurat::RunUMAP(result,
                                                 dims = seq(10),
                                                 verbose = verbose,
                                                 umap.method = "uwot"))
      
      seuratDims <- Seurat::Embeddings(result, reduction = "umap")
      umapDims[sceSampleInd, 1] <- seuratDims[,1]
      umapDims[sceSampleInd, 2] <- seuratDims[,2]
      output[sceSampleInd, 1] <- result[[]]$doubletFinderAnnScore
      output[sceSampleInd, 2] <- result[[]]$doubletFinderLabel
      
      if (!identical(samples, 1)) {
        metadata(inSCE)$sctk$runDoubletFinder[[s]] <- argsList
      }
    }
    if (identical(samples, 1)) {
      metadata(inSCE)$sctk$runDoubletFinder$all_cells <- argsList
    }
    colData(inSCE)[, paste0(colnames(output), "_resolution_", res)] <- NULL
    
    colnames(output) <- paste0(colnames(output), "_resolution_", res)
    output[,2] <- factor(output[,2], levels = c("Singlet", "Doublet"))
    
    colData(inSCE) <- cbind(colData(inSCE), output)
    reducedDim(inSCE,'doubletFinder_UMAP') <- umapDims
  }
  
  colData(tempSCE) <- colData(inSCE)
  S4Vectors::metadata(tempSCE) <- S4Vectors::metadata(inSCE)
  reducedDims(tempSCE) <- reducedDims(inSCE)
  
  return(tempSCE)
}


.summarizeSweep <- function(sweep.list, GT = FALSE, GT.calls = NULL) {
  #require(KernSmooth); require(ROCR)
  ## Set pN-pK param sweep ranges
  name.vec <- names(sweep.list)
  name.vec <- unlist(strsplit(name.vec, split = "pN_"))
  name.vec <- name.vec[seq(2, length(name.vec), by = 2)]
  name.vec <- unlist(strsplit(name.vec, split = "_pK_"))
  pN <- as.numeric(unique(name.vec[seq(1, length(name.vec), by = 2)]))
  pK <- as.numeric(unique(name.vec[seq(2, length(name.vec), by = 2)]))
  
  ## Initialize data structure w/ or w/o AUC column, depending on whether 
  ## ground-truth doublet classifications are available
  if (GT == TRUE) {
    sweep.stats <- as.data.frame(matrix(0L, nrow = length(sweep.list), 
                                        ncol = 4))
    colnames(sweep.stats) <- c("pN","pK","AUC","BCreal")
    sweep.stats$pN <- factor(rep(pN, each = length(pK), levels = pN))
    sweep.stats$pK <- factor(rep(pK, length(pN),levels = pK))
  }
  
  if (GT == FALSE) {
    sweep.stats <- as.data.frame(matrix(0L, nrow = length(sweep.list), 
                                        ncol = 3))
    colnames(sweep.stats) <- c("pN","pK","BCreal")
    sweep.stats$pN <- factor(rep(pN, each = length(pK), levels = pN))
    sweep.stats$pK <- factor(rep(pK, length(pN),levels = pK))
  }
  
  ## Perform pN-pK parameter sweep summary
  for (i in seq_along(sweep.list)) {
    res.temp <- sweep.list[[i]]
    
    ## Use gaussian kernel density estimation of pANN vector to compute 
    ## bimodality coefficient
    gkde <- stats::approxfun(KernSmooth::bkde(res.temp$pANN, kernel = "normal"))
    x <- seq(from = min(res.temp$pANN), to = max(res.temp$pANN), 
             length.out = nrow(res.temp))
    sweep.stats$BCreal[i] <- .bimodality_coefficient(gkde(x))
    
    if (GT == FALSE) { next }
    
    ## If ground-truth doublet classifications are available, perform ROC 
    ## analysis on logistic regression model trained using pANN vector
    meta <- as.data.frame(matrix(0L, nrow = nrow(res.temp), ncol = 2))
    meta[,1] <- GT.calls
    meta[,2] <- res.temp$pANN
    train.ind <- sample(seq(nrow(meta)), round(nrow(meta)/2), replace = FALSE)
    test.ind <- seq(nrow(meta))[-train.ind]
    colnames(meta) <- c("SinDub","pANN")
    meta$SinDub <- factor(meta$SinDub, levels = c("Singlet","Doublet"))
    model.lm <- stats::glm(SinDub ~ pANN, 
                           family = stats::binomial(link = 'logit'), 
                           data = meta, subset = train.ind)
    prob <- stats::predict(model.lm, newdata = meta[test.ind, ], 
                           type = "response")
    ROCpred <- ROCR::prediction(predictions = prob, 
                                labels = meta$SinDub[test.ind])
    perf.auc <- ROCR::performance(ROCpred, measure = "auc")
    sweep.stats$AUC[i] <- perf.auc@y.values[[1]]
  }
  
  return(sweep.stats)
}


.bimodality_coefficient <- function(x) {
  G <- .skewness(x)
  sample.excess.kurtosis <- .kurtosis(x)
  K <- sample.excess.kurtosis
  n <- length(x)
  B <- ((G^2) + 1)/(K + ((3*((n - 1)^2))/((n - 2)*(n - 3))))
  return(B)
}

.skewness <- function(x) {
  n <- length(x)
  S <- (1/n)*sum((x - mean(x))^3)/(((1/n)*sum((x - mean(x))^2))^1.5)
  S <- S*(sqrt(n*(n - 1)))/(n - 2)
  return(S)
}

.kurtosis <- function(x) {
  n <- length(x)
  K <- (1/n)*sum((x - mean(x))^4)/(((1/n)*sum((x - mean(x))^2))^2) - 3
  K <- ((n - 1)*((n + 1)*K - 3*(n - 1))/((n - 2)*(n - 3))) + 3
  return(K)
}

.modelHomotypic <- function(annotations) {
  anno.freq <- table(annotations)/length(annotations)
  x <- sum(anno.freq^2)
  return(x)
}

.find.pK <- function(sweep.stats) {
  
  ## Implementation for data without ground-truth doublet classifications
  '%ni%' <- Negate('%in%')
  if ("AUC" %ni% colnames(sweep.stats) == TRUE) {
    ## Initialize data structure for results storage
    bc.mvn <- as.data.frame(matrix(0L, nrow = length(unique(sweep.stats$pK)), 
                                   ncol = 5))
    colnames(bc.mvn) <- c("ParamID","pK","MeanBC","VarBC","BCmetric")
    bc.mvn$pK <- unique(sweep.stats$pK)
    bc.mvn$ParamID <- seq(nrow(bc.mvn))
    
    ## Compute bimodality coefficient mean, variance, and BCmvn across pN-pK 
    ## sweep results
    x <- 0
    for (i in unique(bc.mvn$pK)) {
      x <- x + 1
      ind <- which(sweep.stats$pK == i)
      bc.mvn$MeanBC[x] <- mean(sweep.stats[ind, "BCreal"])
      bc.mvn$VarBC[x] <- stats::sd(sweep.stats[ind, "BCreal"])^2
      bc.mvn$BCmetric[x] <- mean(sweep.stats[ind, "BCreal"]) / 
        (stats::sd(sweep.stats[ind, "BCreal"])^2)
    }
    return(bc.mvn)
  }
  
  ## Implementation for data with ground-truth doublet classifications (e.g., 
  ## MULTI-seq, CellHashing, Demuxlet, etc.)
  if ("AUC" %in% colnames(sweep.stats) == TRUE) {
    ## Initialize data structure for results storage
    bc.mvn <- as.data.frame(matrix(0L, nrow = length(unique(sweep.stats$pK)), 
                                   ncol = 6))
    colnames(bc.mvn) <- c("ParamID","pK","MeanAUC","MeanBC","VarBC","BCmetric")
    bc.mvn$pK <- unique(sweep.stats$pK)
    bc.mvn$ParamID <- seq(nrow(bc.mvn))
    
    ## Compute bimodality coefficient mean, variance, and BCmvn across pN-pK 
    ## sweep results
    x <- 0
    for (i in unique(bc.mvn$pK)) {
      x <- x + 1
      ind <- which(sweep.stats$pK == i)
      bc.mvn$MeanAUC[x] <- mean(sweep.stats[ind, "AUC"])
      bc.mvn$MeanBC[x] <- mean(sweep.stats[ind, "BCreal"])
      bc.mvn$VarBC[x] <- stats::sd(sweep.stats[ind, "BCreal"])^2
      bc.mvn$BCmetric[x] <- mean(sweep.stats[ind, "BCreal"]) / 
        (stats::sd(sweep.stats[ind, "BCreal"])^2)
    }
    
    return(bc.mvn)
    
  }
}

.doubletFinder_v3 <- function(seu, PCs, pN = 0.25, pK, nExp, reuse.pANN = FALSE,
                              sct = FALSE, verbose = FALSE) {
  
  ## Generate new list of doublet classificatons from existing pANN vector to 
  ## save time
  if (reuse.pANN != FALSE ) {
    pANN.old <- seu[[]][ , reuse.pANN]
    classifications <- rep("Singlet", length(pANN.old))
    classifications[order(pANN.old, decreasing = TRUE)[seq(nExp)]] <- "Doublet"
    seu[[]][, paste("DF.classifications", pN, pK, nExp, sep = "_")] <- 
      classifications
    return(seu)
  }
  
  if (reuse.pANN == FALSE) {
    ## Make merged real-artifical data
    real.cells <- colnames(seu)
    data <- Seurat::GetAssayData(seu, slot = "counts", 
                                 assay = "RNA")[, real.cells]
    n_real.cells <- length(real.cells)
    n_doublets <- round(n_real.cells/(1 - pN) - n_real.cells)
    if (verbose) {
      message(date(), " ...   Creating", n_doublets, "artificial doublets")
    }
    real.cells1 <- sample(real.cells, n_doublets, replace = TRUE)
    real.cells2 <- sample(real.cells, n_doublets, replace = TRUE)
    doublets <- (data[, real.cells1] + data[, real.cells2])/2
    colnames(doublets) <- paste("X", seq(n_doublets), sep = "")
    data_wdoublets <- cbind(data, doublets)
    
    ## Store important pre-processing information
    orig.commands <- seu@commands
    
    ## Pre-process Seurat object
    if (sct == FALSE) {
      seu_wdoublets <- Seurat::CreateSeuratObject(counts = data_wdoublets)
      
      seu_wdoublets <- Seurat::NormalizeData(
        seu_wdoublets,
        normalization.method = orig.commands$NormalizeData.RNA@params$normalization.method,
        scale.factor = orig.commands$NormalizeData.RNA@params$scale.factor,
        margin = orig.commands$NormalizeData.RNA@params$margin
      )
      
      seu_wdoublets <- Seurat::FindVariableFeatures(
        seu_wdoublets,
        selection.method = orig.commands$FindVariableFeatures.RNA$selection.method,
        loess.span = orig.commands$FindVariableFeatures.RNA$loess.span,
        clip.max = orig.commands$FindVariableFeatures.RNA$clip.max,
        mean.function = orig.commands$FindVariableFeatures.RNA$mean.function,
        dispersion.function = orig.commands$FindVariableFeatures.RNA$dispersion.function,
        num.bin = orig.commands$FindVariableFeatures.RNA$num.bin,
        binning.method = orig.commands$FindVariableFeatures.RNA$binning.method,
        nfeatures = orig.commands$FindVariableFeatures.RNA$nfeatures,
        mean.cutoff = orig.commands$FindVariableFeatures.RNA$mean.cutoff,
        dispersion.cutoff = orig.commands$FindVariableFeatures.RNA$dispersion.cutoff
      )
      
      seu_wdoublets <- Seurat::ScaleData(
        seu_wdoublets,
        features = orig.commands$ScaleData.RNA$features,
        model.use = orig.commands$ScaleData.RNA$model.use,
        do.scale = orig.commands$ScaleData.RNA$do.scale,
        do.center = orig.commands$ScaleData.RNA$do.center,
        scale.max = orig.commands$ScaleData.RNA$scale.max,
        block.size = orig.commands$ScaleData.RNA$block.size,
        min.cells.to.block = orig.commands$ScaleData.RNA$min.cells.to.block
      )
      
      seu_wdoublets <- Seurat::RunPCA(
        seu_wdoublets,
        features = orig.commands$ScaleData.RNA$features,
        npcs = length(PCs),
        rev.pca =  orig.commands$RunPCA.RNA$rev.pca,
        weight.by.var = orig.commands$RunPCA.RNA$weight.by.var,
        verbose = FALSE
      )
      pca.coord <- Seurat::Reductions(seu_wdoublets, 
                                      "pca")@cell.embeddings[ , PCs]
      cell.names <- rownames(seu_wdoublets[[]])
      nCells <- length(cell.names)
      rm(seu_wdoublets); gc() # Free up memory
    }
    
    if (sct == TRUE) {
      #require(sctransform)
      message(date(), " ...   Creating Seurat object")
      seu_wdoublets <- Seurat::CreateSeuratObject(counts = data_wdoublets)
      
      message(date(), " ...   Running SCTransform")
      seu_wdoublets <- Seurat::SCTransform(seu_wdoublets)
      
      message(date(), " ...   Running PCA")
      seu_wdoublets <- Seurat::RunPCA(seu_wdoublets, npcs = length(PCs))
      pca.coord <- Seurat::Reductions(seu_wdoublets, 
                                      "pca")@cell.embeddings[ , PCs]
      cell.names <- rownames(seu_wdoublets[[]])
      nCells <- length(cell.names)
      rm(seu_wdoublets); gc()
    }
    
    ## Compute PC distance matrix
    dist.mat <- fields::rdist(pca.coord)
    
    ## Compute pANN
    pANN <- as.data.frame(matrix(0L, nrow = n_real.cells, ncol = 1))
    rownames(pANN) <- real.cells
    colnames(pANN) <- "pANN"
    k <- round(nCells * pK)
    for (i in seq(n_real.cells)) {
      neighbors <- order(dist.mat[, i])
      neighbors <- neighbors[2:(k + 1)]
      #neighbor.names <- rownames(dist.mat)[neighbors]
      pANN$pANN[i] <- length(which(neighbors > n_real.cells))/k
    }
    
    classifications <- rep("Singlet",n_real.cells)
    classifications[order(pANN$pANN[seq(n_real.cells)], 
                          decreasing = TRUE)[seq(nExp)]] <- "Doublet"
    seu[[paste("pANN", pN, pK, nExp, sep = "_")]] <- 
      pANN[colnames(seu), 1]
    seu[[paste("DF.classifications", pN, pK, nExp, sep = "_")]] <- 
      classifications
    return(seu)
  }
}
compbiomed/singleCellTK documentation built on Oct. 27, 2024, 3:26 a.m.