#' Dimensionality reduction through PCA
#'
#' @param MAE A multi-assay experiment object
#' @param tax_level The taxon level used for organisms
#' @param color A condition to color data points by e.g. "AGE"
#' @param shape A condition to shape data points by e.g. "SEX"
#' @param cx Component on the x-axis e.g. 1
#' @param cy Component on the y-axis e.g. 2
#' @param cz Component on the z-axis e.g. 3
#' @param n_neighbors Number of nearest neighbors
#' @param metric Distance function e.g. c("euclidean", "manhattan")
#' @param n_epochs Number of iterations
#' @param init Initial embedding using eigenvector e.g c("spectral", "random")
#' @param min_dist Determines how close points appear in the final layout
#' @param datatype Datatype to use e.g. c("logcpm", "relabu", "counts")
#' @return A list with a plotly object and summary table
#'
#' @examples
#' data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
#' toy_data <- readRDS(data_dir)
#' result <- dimred_umap(toy_data,
#' tax_level = "genus",
#' color = "AGE",
#' shape = "DISEASE",
#' cx = 1,
#' cy = 2,
#' datatype = "logcpm"
#' )
#' result$plot
#'
#' @import umap
#' @import dplyr
#' @import scales
#' @import plotly
#' @import magrittr
#' @import reshape2
#' @import MultiAssayExperiment
#'
#' @export
dimred_umap <- function(MAE,
tax_level,
color,
shape = NULL,
cx = 1,
cy = 2,
cz = NULL,
n_neighbors = 15,
metric = c("euclidean", "manhattan"),
n_epochs = 200,
init = c("spectral", "random"),
min_dist = 0.1,
datatype = c("logcpm", "relabu", "counts")) {
# Default variables
metric <- match.arg(metric)
init <- match.arg(init)
datatype <- match.arg(datatype)
# Extract data
microbe <- MAE[["MicrobeGenetics"]]
# host <- MultiAssayExperiment::experiments(MAE)[[2]]
tax_table <- as.data.frame(rowData(microbe)) # organism x taxlev
sam_table <- as.data.frame(colData(microbe)) # sample x condition
counts_table <-
as.data.frame(assays(microbe))[, rownames(sam_table)] #organism x sample
df <- counts_table %>%
# Sum counts by taxon level
upsample_counts(tax_table, tax_level) %>%
# Choose data type
{
if (datatype == "relabu") {
counts_to_relabu(.)
} else if (datatype == "logcpm") {
counts_to_logcpm(.)
} else {
.
}
} %>%
# Fix constant/zero row
{
if (sum(base::rowSums(as.matrix(.)) == 0) > 0) {
. <- .[-which(base::rowSums(as.matrix(.)) == 0), ]
} else {
.
}
} %>%
# Transpose
t()
# Custom Parameters
umap.custom <- umap.defaults
umap.custom$n_neighbors <- n_neighbors
umap.custom$n_components <- max(cx, cy, cz)
umap.custom$metric <- metric
umap.custom$n_epochs <- n_epochs
umap.custom$init <- init
umap.custom$min_dist <- min_dist
# Run UMAP
umap.data <- umap(df, config = umap.custom, method = "naive")
df.umap <- umap.data$layout
colnames(df.umap) <- paste("C", seq_len(ncol(df.umap)), sep = "")
# Merge in covariate information
if (!is.null(shape)) {
df.umap.m <- merge(df.umap,
sam_table[, c(color, shape), drop = FALSE],
by = 0, all = TRUE
)
# When shape is required
# Bypass duplicate colnames if color == shape
shape <- colnames(df.umap.m)[ncol(df.umap.m)]
df.umap.m[[shape]] <- as.factor(df.umap.m[[shape]])
} else {
df.umap.m <-
merge(df.umap, sam_table[, color, drop = FALSE], by = 0, all = TRUE)
shape <- "shape" # Referenced by plotly later
df.umap.m[[shape]] <- 1 # Constant results in omitting shape
}
# Plotly | Scatterplot
if (is.null(cz)) {
# 2D Plot
p <- plot_ly(df.umap.m,
x = as.formula(paste("~C", cx, sep = "")),
y = as.formula(paste("~C", cy, sep = "")),
mode = "markers",
color = as.formula(paste("~", color, sep = "")),
symbol = as.formula(paste("~", shape, sep = "")),
type = "scatter",
text = df.umap.m$Row.names,
marker = list(size = 10)
)
} else {
# 3D Plot
p <- plot_ly(df.umap.m,
x = as.formula(paste("~C", cx, sep = "")),
y = as.formula(paste("~C", cy, sep = "")),
z = as.formula(paste("~C", cz, sep = "")),
mode = "markers",
color = as.formula(paste("~", color, sep = "")),
symbol = as.formula(paste("~", shape, sep = "")),
symbols = c(
"circle",
"square",
"diamond",
"cross",
"square-open",
"circle-open",
"diamond-open",
"x"
),
type = "scatter3d",
text = df.umap.m$Row.names,
marker = list(size = 6)
)
}
p$p <- NULL # To suppress a shiny warning
return(list(plot = p))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.