Description Usage Arguments Details Value Author(s) References See Also Examples
Association mapping.
1 2 3 |
object |
GPA model fit. |
FDR |
FDR level. |
fdrControl |
Method to control FDR. Possible values are "global" (global FDR control) and "local" (local FDR control). Default is "global". |
pattern |
Pattern for association mapping.
By default (i.e., |
... |
Other parameters to be passed through to generic |
assoc
uses the direct posterior probability approach of Newton et al. (2004)
to control global FDR in association mapping.
Users can specify the pattern using 1 and * in pattern
argument,
where 1 and * indicate phenotypes of interest and phenotypes that are not of interest, respectively.
For example, when there are three phenotypes,
pattern="111"
means a SNP associated with all of three phenotypes,
while pattern="11*"
means a SNP associated with the first two phenotypes
(i.e., association with the third phenotype is ignored (averaged out)).
If pattern=NULL
, returns a binary matrix indicating association of SNPs for each phenotype,
where its rows and columns match those of input p-value matrix for function GPA
.
Otherwise, returns a binary vector indicating association of SNPs for the phenotype combination of interest.
Dongjun Chung
Chung D*, Yang C*, Li C, Gelernter J, and Zhao H (2014), "GPA: A statistical approach to prioritizing GWAS results by integrating pleiotropy information and annotation data," PLoS Genetics, 10: e1004787. (* joint first authors)
Newton MA, Noueiry A, Sarkar D, and Ahlquist P (2004), "Detecting differential gene expression with a semiparametric hierarchical mixture method," Biostatistics, Vol. 5, pp. 155-176.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # simulator function
simulator <- function( risk.ind, nsnp=20000, alpha=0.6 ) {
m <- length(risk.ind)
p.sig <- rbeta( m, alpha, 1 )
pvec <- runif(nsnp)
pvec[ risk.ind ] <- p.sig
return(pvec)
}
# run simulation
set.seed(12345)
nsnp <- 1000
alpha <- 0.3
pmat <- matrix( NA, nsnp, 5 )
pmat[,1] <- simulator( c(1:200), nsnp=nsnp, alpha=alpha )
pmat[,2] <- simulator( c(51:250), nsnp=nsnp, alpha=alpha )
pmat[,3] <- simulator( c(401:600), nsnp=nsnp, alpha=alpha )
pmat[,4] <- simulator( c(451:750), nsnp=nsnp, alpha=alpha )
pmat[,5] <- simulator( c(801:1000), nsnp=nsnp, alpha=alpha )
ann <- rbinom(n = nrow(pmat), size = 1, prob = 0.15)
ann <- as.matrix(ann,ncol = 1)
fit.GPA.wAnn <- GPA( pmat, ann , maxIter = 100 )
cov.GPA.wAnn <- cov( fit.GPA.wAnn )
assoc.GPA.wAnn <- assoc( fit.GPA.wAnn, FDR=0.05, fdrControl="global" )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.