predict_exposure: LDA prediction of samples based on existing signatures

Description Usage Arguments Value Examples

View source: R/discovery_prediction.R

Description

LDA prediction of samples based on existing signatures

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
predict_exposure(
  bagel,
  g,
  table_name,
  signature_res,
  algorithm,
  signatures_to_use = seq_len(ncol(signature_res@signatures)),
  seed = 1,
  verbose = FALSE
)

Arguments

bagel

Input samples to predit signature weights

g

A BSgenome object indicating which genome reference the variants and their coordinates were derived from.

table_name

Name of table used for posterior prediction. Must match the table type used to generate the prediction signatures

signature_res

Signatures to use for prediction

algorithm

Algorithm to use for prediction. Choose from "lda_posterior", decompTumor2Sig, and deconstructSigs

signatures_to_use

Which signatures in set to use (default all)

seed

Seed to use for reproducible results, set to null to disable

verbose

Whether to show intermediate results

Value

Results a result object containing signatures and sample weights

Examples

1
2
3
4
5
bay <- readRDS(system.file("testdata", "bagel.rds", package = "BAGEL"))
g <- select_genome("19")
build_standard_table(bay, g, "SBS96", overwrite = TRUE)
predict_exposure(bagel = bay, table_name = "SBS96",
signature_res = BAGEL::cosmic_v2_sigs, algorithm = "lda")

campbio/BAGEL documentation built on Oct. 6, 2020, 3:59 a.m.