#------------------------------------------------------------------------------#
# Importing functions
#------------------------------------------------------------------------------#
#' Import a single integration matrix from file
#'
#' @description
#' `r lifecycle::badge("stable")`
#' This function allows to read and import an integration matrix
#' (ideally produced by VISPA2) and converts it to a tidy
#' format.
#'
#' @param path The path to the file on disk
#' @param separator The column delimiter used, defaults to `\t`
#' @param additional_cols Either `NULL`, a named character vector or a named
#' list. See details.
#' @param sample_names_to Name of the output column holding the sample
#' identifier. Defaults to `pcr_id_column()`
#' @param values_to Name of the output column holding the quantification
#' values. Defaults to `Value`.
#' @param to_exclude `r lifecycle::badge("deprecated")`
#' Deprecated. Use `additonal_cols` instead
#' @param keep_excluded `r lifecycle::badge("deprecated")`
#' Deprecated. Use `additonal_cols` instead
#'
#' @details
#' ## Additional columns
#' Additional columns are annotation columns present in the integration matrix
#' to import that are not
#' * part of the mandatory IS vars (see `mandatory_IS_vars()`)
#' * part of the annotation IS vars (see `annotation_IS_vars()`)
#' * the sample identifier column
#' * the quantification column
#'
#' When specified they tell the function how to treat those columns in the
#' import phase, by providing a named character vector, where names correspond
#' to the additional column names and values are a choice of the following:
#'
#' * `"char"` for character (strings)
#' * `"int"` for integers
#' * `"logi"` for logical values (TRUE / FALSE)
#' * `"numeric"` for numeric values
#' * `"factor"` for factors
#' * `"date"` for generic date format - note that functions that
#' need to read and parse files will try to guess the format and parsing
#' may fail
#' * One of the accepted date/datetime formats by `lubridate`,
#' you can use `ISAnalytics::date_formats()` to view the accepted formats
#' * `"_"` to drop the column
#'
#' For more details see the "How to use import functions" vignette:
#' \code{vignette("workflow_start", package = "ISAnalytics")}
#'
#'
#' @template transform_list
#'
#' @section Required tags:
#' The function will explicitly check for the presence of these tags:
#'
#' * All columns declared in `mandatory_IS_vars()`
#'
#' @return A data frame object in tidy format
#'
#' @family Import functions
#' @export
#'
#' @examples
#' fs_path <- generate_default_folder_structure(type = "correct")
#' matrix_path <- fs::path(
#' fs_path$root, "PJ01", "quantification",
#' "POOL01-1", "PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz"
#' )
#' matrix <- import_single_Vispa2Matrix(matrix_path)
#' head(matrix)
import_single_Vispa2Matrix <- function(
path,
separator = "\t",
additional_cols = NULL,
transformations = NULL,
sample_names_to = pcr_id_column(),
values_to = "Value",
to_exclude = lifecycle::deprecated(),
keep_excluded = lifecycle::deprecated()) {
stopifnot(!missing(path) & is.character(path))
stopifnot(is.character(separator))
if (!file.exists(path)) {
not_found_msg <- paste("File not found at", path)
rlang::abort(not_found_msg)
}
if (!fs::is_file(path)) {
rlang::abort("Path exists but is not a file")
}
stopifnot(is.null(transformations) ||
(is.list(transformations) && !is.null(names(transformations))))
stopifnot(is.character(sample_names_to))
sample_names_to <- sample_names_to[1]
stopifnot(is.character(values_to))
values_to <- values_to[1]
deprecation_details <- paste(
"Arguments 'to_exclude' and 'keep_excluded'",
"are deprecated in favor of a single argument",
"which allows a more refined tuning. See",
"`?import_single_Vispa2Matrix` for details"
)
if (lifecycle::is_present(to_exclude)) {
lifecycle::deprecate_stop(
when = "1.5.4",
what = "import_single_Vispa2Matrix(to_exclude)",
with = "import_single_Vispa2Matrix(additional_cols)",
details = deprecation_details
)
return(NULL)
}
if (lifecycle::is_present(keep_excluded)) {
lifecycle::deprecate_stop(
when = "1.5.4",
what = "import_single_Vispa2Matrix(keep_excluded)",
with = "import_single_Vispa2Matrix(additional_cols)",
details = deprecation_details
)
return(NULL)
}
tidy_df <- .import_single_matrix(
path = path, separator = separator,
additional_cols = additional_cols,
transformations = transformations,
call_mode = "EXTERNAL",
id_col_name = sample_names_to,
val_col_name = values_to
)
return(tidy_df)
}
#' Import the association file from disk
#'
#' @description
#' `r lifecycle::badge("stable")`
#' Imports the association file and optionally performs a check on
#' the file system starting from the root to assess the alignment between the
#' two.
#'
#' @param path The path on disk to the association file.
#' @param root The path on disk of the root folder of VISPA2 output or `NULL`.
#' See details.
#' @param dates_format A single string indicating how dates should be parsed.
#' Must be a value in: \code{date_formats()}
#' @param separator The column separator used in the file
#' @param filter_for A named list where names represent column names that
#' must be filtered. For example: `list(ProjectID = c("PROJECT1", "PROJECT2))`
#' will filter the association file so that it contains only those rows
#' for which the value of the column "ProjectID" is one of the specified
#' values. If multiple columns are present in the list all filtering
#' conditions are applied as a logical AND.
#' @param import_iss Import VISPA2 pool stats and merge them with the
#' association file? Logical value
#' @param convert_tp Should be time points be converted into months and
#' years? Logical value
#' @param ... Additional arguments to pass to
#' \code{\link{import_Vispa2_stats}}
#' @param tp_padding `r lifecycle::badge("deprecated")` Deprecated.
#' Use `transformations` instead.
#'
#' @template transform_list
#' @template report_path_param
#'
#' @family Import functions
#' @return The data frame containing metadata
#' @details
#' ## File system alignment
#' If the `root` argument is set to `NULL` no file system alignment is
#' performed. This allows to import the basic file but it won't be
#' possible to perform automated matrix and stats import.
#' For more details see the "How to use import functions" vignette:
#' \code{vignette("workflow_start", package = "ISAnalytics")}
#'
#' ## Time point conversion
#' The time point conversion is based on the following logic, given `TPD`
#' is the column containing the time point expressed in days and
#' `TPM` and `TPY` are respectively the time points expressed as month
#' and years
#' - If `TPD` is `NA` --> `NA` (for both months and years)
#' - `TPM` = 0, `TPY` = 0 if and only if `TPD` = 0
#'
#' For conversion in months:
#' - `TPM` = ceiling(`TPD`/30) if `TPD` < 30 otherwise `TPM` = round(`TPD`/30)
#'
#' For conversion in years:
#' - `TPY` = ceiling(`TPD`/360)
#'
#' @section Required tags:
#' The function will explicitly check for the presence of these tags:
#'
#' ```{r echo=FALSE, results="asis"}
#' all_tags <- available_tags()
#' af_needed <- all_tags |>
#' dplyr::mutate(
#' in_fun = purrr::map_lgl(.data$needed_in,
#' ~ "import_association_file" %in% .x)
#' ) |>
#' dplyr::filter(in_fun == TRUE) |>
#' dplyr::distinct(.data$tag) |>
#' dplyr::pull("tag")
#' cat(paste0("* ", af_needed, collapse="\n"))
#' ```
#'
#' The function will use all the available specifications contained in
#' `association_file_columns(TRUE)` to read and parse the file.
#' If the specifications contain columns with a type `"date"`, the function
#' will parse the generic date with the format in the `dates_format` argument.
#'
#' @export
#'
#' @seealso \code{\link{date_formats}}
#' @examples
#' fs_path <- generate_default_folder_structure(type = "correct")
#' af <- import_association_file(fs_path$af,
#' root = fs_path$root,
#' report_path = NULL
#' )
#' head(af)
import_association_file <- function(
path,
root = NULL,
dates_format = "ymd",
separator = "\t",
filter_for = NULL,
import_iss = FALSE,
convert_tp = TRUE,
report_path = default_report_path(),
transformations = default_af_transform(convert_tp),
tp_padding = lifecycle::deprecated(),
...) {
# Check parameters
stopifnot(is.character(path))
path <- path[1]
stopifnot((is.character(root) & length(root) == 1) || (is.null(root)))
stopifnot(file.exists(path))
if (!is.null(root) && root != "") {
stopifnot(file.exists(root))
}
stopifnot(length(dates_format) == 1 & dates_format %in% date_formats())
stopifnot(is.character(separator))
separator <- separator[1]
stopifnot(is.logical(import_iss))
import_iss <- import_iss[1]
if (import_iss & is.null(root)) {
rlang::abort(.no_stats_import_err())
}
stopifnot(is.null(transformations) ||
(is.list(transformations) && !is.null(names(transformations))))
if (lifecycle::is_present(tp_padding)) {
lifecycle::deprecate_warn(
when = "1.5.4",
what = "import_association_file(tp_padding)",
details = c(
paste(
"The argument is now deprecated in favor of custom",
"column transformations"
),
i = paste(
"See the documentation of `transform_columns`",
"or browse the package vignettes for more details"
)
)
)
}
dots <- rlang::dots_list(..., .named = TRUE)
# Check filter
stopifnot(is.null(filter_for) ||
(is.list(filter_for) && !is.null(names(filter_for))))
# Check presence of required tags
required_tags <- list()
req_tags_politic <- c()
if (!is.null(root)) {
### Tags required for file system alignment
required_tags <- append(
required_tags,
list(
"project_id" = "char",
"proj_folder" = "char",
"vispa_concatenate" = "char"
)
)
req_tags_politic <- c(req_tags_politic,
"project_id" = "error",
"proj_folder" = "error",
"vispa_concatenate" = "error"
)
}
if (convert_tp) {
### tags required for time point conversion
required_tags <- append(
required_tags,
list("tp_days" = c("char", "int", "numeric"))
)
req_tags_politic <- c(req_tags_politic,
"tp_days" = "first"
)
}
tags_to_cols <- if (!purrr::is_empty(required_tags)) {
.check_required_cols(
required_tags = required_tags,
vars_df = association_file_columns(TRUE),
duplicate_politic = req_tags_politic
)
} else {
NULL
}
# Read file and check the correctness
get_col_name <- function(tag_name) {
if (!is.null(tags_to_cols)) {
return(tags_to_cols |>
dplyr::filter(.data$tag == tag_name) |>
dplyr::pull(.data$names))
}
return(NULL)
}
af_checks <- .manage_association_file(
af_path = path,
root = root,
format = dates_format,
delimiter = separator,
filter = filter_for,
proj_fold_col = get_col_name("proj_folder"),
concat_pool_col = get_col_name("vispa_concatenate"),
project_id_col = get_col_name("project_id")
)
as_file <- af_checks$af
parsing_problems <- af_checks$parsing_probs
date_problems <- af_checks$date_probs
checks <- af_checks$check
if (is.null(parsing_problems) || nrow(parsing_problems) == 0) {
parsing_problems <- NULL
}
if (is.null(date_problems) || nrow(date_problems) == 0) {
date_problems <- NULL
}
col_probs <- list(missing = NULL, non_standard = NULL)
if (!.check_af_correctness(as_file)) {
min_required_cols <- association_file_columns(TRUE) |>
dplyr::filter(.data$flag == "required") |>
dplyr::pull(.data$names)
col_probs[["missing"]] <- min_required_cols[
!min_required_cols %in% colnames(as_file)
]
}
non_standard <- colnames(as_file)[
!colnames(as_file) %in% c(
association_file_columns(), .path_cols_names()
)
]
if (!purrr::is_empty(non_standard)) {
col_probs[["non_standard"]] <- non_standard
}
## Fix timepoints
if (convert_tp) {
tp_col <- tags_to_cols |>
dplyr::filter(.data$tag == "tp_days") |>
dplyr::pull(.data$names)
if (!purrr::is_empty(tp_col) && tp_col %in% colnames(as_file)) {
as_file <- as_file |>
dplyr::mutate(
TimepointMonths = .timepoint_to_months(.data[[tp_col]]),
TimepointYears = .timepoint_to_years(.data[[tp_col]])
)
}
}
import_stats_rep <- NULL
missing_stats_rep <- NULL
if (import_iss) {
dots_iss <- dots[!names(dots) %in% c(
"association_file",
"report_path",
"join_with_af",
"checks_env"
)]
stats <- NULL
withCallingHandlers(
{
withRestarts(
{
stats <- rlang::exec(import_Vispa2_stats,
association_file = as_file,
report_path = "INTERNAL",
join_with_af = TRUE,
!!!dots_iss
)
},
fail_stats = function() {
fail_stats_msg <- paste(
"Issues in importing stats",
"files, skipping"
)
rlang::inform(fail_stats_msg, class = "fail_stats_msg")
}
)
},
error = function(err) {
rlang::inform(err$message)
invokeRestart("fail_stats")
}
)
if (!is.null(stats)) {
as_file <- stats$stats
if (!is.null(stats$report)) {
import_stats_rep <- stats$report$import
missing_stats_rep <- stats$report$miss
}
}
}
if (!is.null(transformations)) {
as_file <- transform_columns(as_file, transformations)
}
crit_tags <- c(
"project_id", "pool_id", "tag_seq", "subject", "tissue",
"cell_marker", "pcr_replicate", "vispa_concatenate",
"pcr_repl_id", "proj_folder"
)
crit_colnames <- association_file_columns(TRUE) |>
dplyr::filter(.data$tag %in% crit_tags) |>
dplyr::pull(.data$names)
crit_colnames <- colnames(as_file)[colnames(as_file) %in% crit_colnames]
crit_nas <- if (length(crit_colnames) > 0) {
nas_crit <- purrr::map_lgl(crit_colnames, ~ {
any(is.na(as_file[[.x]]))
}) |>
purrr::set_names(crit_colnames)
nas_crit <- names(purrr::keep(nas_crit, ~ .x == TRUE))
if (length(nas_crit) == 0) {
NULL
} else {
nas_crit
}
} else {
NULL
}
withCallingHandlers(
{
if ("checks_env" %in% names(dots) &&
rlang::is_environment(dots$checks_env)) {
rlang::env_bind(
dots$checks_env,
parsing_prob = parsing_problems,
dates_prob = date_problems,
col_prob = col_probs,
crit_nas = crit_nas,
fs_align = checks,
iss_stats = import_stats_rep,
iss_stats_miss = missing_stats_rep
)
}
.produce_report("asso_file",
params = list(
parsing_prob = parsing_problems,
dates_prob = date_problems,
col_prob = col_probs,
crit_nas = crit_nas,
fs_align = checks,
iss_stats = import_stats_rep,
iss_stats_miss = missing_stats_rep
),
path = report_path
)
},
error = function(cnd) {
rest <- findRestart("report_fail")
invokeRestart(rest, cnd)
}
)
if (!getOption("ISAnalytics.reports", TRUE) &
getOption("ISAnalytics.verbose", TRUE)) {
summary_report <- .summary_af_import_msg(
pars_prob = parsing_problems, dates_prob = date_problems,
cols_prob = col_probs[[!is.null(col_probs)]],
crit_na = crit_nas,
checks = ifelse(is.null(checks),
yes = "skipped",
no = ifelse(any(!checks$Found),
"problems detected",
"no problems detected"
)
)
)
rlang::inform(summary_report, class = "summary_report")
}
as_file
}
#' Import Vispa2 stats given the aligned association file.
#'
#' @description
#' `r lifecycle::badge("stable")`
#' Imports all the Vispa2 stats files for each pool provided the association
#' file has been aligned with the file system
#' (see \code{\link{import_association_file}}).
#'
#' @param association_file The file system aligned association file
#' (contains columns with absolute paths to the 'iss' folder)
#' @param file_prefixes A character vector with known file prefixes
#' to match on file names. NOTE: the elements represent regular expressions.
#' For defaults see \link{default_iss_file_prefixes}.
#' @param join_with_af Logical, if `TRUE` the imported stats files will be
#' merged with the association file, if `FALSE` a single data frame holding
#' only the stats will be returned.
#' @param pool_col A single string. What is the name of the pool column
#' used in the Vispa2 run? This will be used as a key to perform a join
#' operation with the stats files `POOL` column.
#'
#' @template report_path_param
#' @section Required tags:
#' The function will explicitly check for the presence of these tags:
#'
#' ```{r echo=FALSE, results="asis"}
#' all_tags <- available_tags()
#' needed <- all_tags |>
#' dplyr::mutate(
#' in_fun = purrr::map_lgl(.data$needed_in,
#' ~ "import_Vispa2_stats" %in% .x)
#' ) |>
#' dplyr::filter(in_fun == TRUE) |>
#' dplyr::distinct(.data$tag) |>
#' dplyr::pull("tag")
#' cat(paste0("* ", needed, collapse="\n"))
#' ```
#'
#'
#' @family Import functions
#' @importFrom rlang inform abort .data
#' @importFrom stats setNames
#'
#' @return A data frame
#' @export
#'
#' @examples
#' fs_path <- generate_default_folder_structure(type = "correct")
#' af <- import_association_file(fs_path$af,
#' root = fs_path$root,
#' import_iss = FALSE,
#' report_path = NULL
#' )
#' stats_files <- import_Vispa2_stats(af,
#' join_with_af = FALSE,
#' report_path = NULL
#' )
#' head(stats_files)
import_Vispa2_stats <- function(
association_file,
file_prefixes = default_iss_file_prefixes(),
join_with_af = TRUE,
pool_col = "concatenatePoolIDSeqRun",
report_path = default_report_path()) {
## Check param
if (!is.data.frame(association_file)) {
rlang::abort(.af_not_imported_err())
}
path_cols <- .path_cols_names()
if (!path_cols$iss %in% colnames(association_file)) {
rlang::abort(.af_not_aligned_err())
}
required_tags <- list(
"project_id" = "char",
"tag_seq" = "char",
"pcr_repl_id" = "char"
)
tag_politics <- list(
"project_id" = "error",
"tag_seq" = "error",
"pcr_repl_id" = "error"
)
tags_to_cols <- .check_required_cols(
required_tags = required_tags,
vars_df = association_file_columns(TRUE),
duplicate_politic = tag_politics
)
min_cols <- c(tags_to_cols$names, pool_col, path_cols$iss)
if (!all(min_cols %in% colnames(association_file))) {
rlang::abort(
.missing_needed_cols(
min_cols[!min_cols %in% colnames(association_file)]
)
)
}
stopifnot(is.character(file_prefixes))
stopifnot(is.logical(join_with_af))
join_with_af <- join_with_af[1]
if (join_with_af) {
stopifnot(is.character(pool_col) & length(pool_col) == 1)
stopifnot(pool_col %in% colnames(association_file))
}
## Import
stats <- .import_stats_iss(
association_file = association_file,
prefixes = file_prefixes,
pool_col = pool_col,
path_iss_col = path_cols$iss,
tags = tags_to_cols
)
report <- stats$report
stats <- stats$stats
## - IF NO STATS IMPORTED (STATS ARE NULL)
if (is.null(stats)) {
if (getOption("ISAnalytics.verbose", TRUE) == TRUE) {
rlang::inform(.no_stat_files_imported())
}
if (!is.null(report_path) && report_path == "INTERNAL") {
## If function was called from import_association_file
return(stats = association_file, report = report)
}
to_return <- if (join_with_af) {
association_file
} else {
NULL
}
## Produce report if it is requested
withCallingHandlers(
{
.produce_report("vispa2_stats",
params = list(iss_stats = report),
path = report_path
)
},
error = function(cnd) {
rest <- findRestart("report_fail")
invokeRestart(rest, cnd)
}
)
## Return nothing or the original af
return(to_return)
}
## - IF STATS NOT NULL
## Merge if requested
if (join_with_af) {
required_tags_for_join <- list(
"tag_seq" = "char",
"vispa_concatenate" = "char"
)
iss_tags_to_cols <- .check_required_cols(required_tags_for_join,
iss_stats_specs(TRUE),
duplicate_politic = "error"
)
if (any(!iss_tags_to_cols$names %in% colnames(stats))) {
msg <- c("Error in joining VISPA2 stats with AF - skipping",
.missing_needed_cols(iss_tags_to_cols$names[
!iss_tags_to_cols$names %in% colnames(stats)
]),
i = paste(
"Needed columns for join were not found in",
"imported stats. Check your iss stats specs",
"with `iss_stats_specs(TRUE)` and check the files",
"are not malformed."
),
i = paste("Returning imported data only")
)
rlang::inform(msg, class = "iss_join_missing")
return(stats)
}
iss_pool_col <- iss_tags_to_cols |>
dplyr::filter(.data$tag == "vispa_concatenate") |>
dplyr::pull(.data$names)
iss_tag_col <- iss_tags_to_cols |>
dplyr::filter(.data$tag == "tag_seq") |>
dplyr::pull(.data$names)
og_af_rows <- nrow(association_file)
association_file <- association_file |>
dplyr::left_join(stats, by = c(
stats::setNames(iss_pool_col, pool_col),
stats::setNames(iss_tag_col, tags_to_cols |>
dplyr::filter(.data$tag == "tag_seq") |>
dplyr::pull(.data$names))
))
if (nrow(association_file) > og_af_rows) {
warn_dupl <- c(
"Warning: detected rows duplication",
i = paste(
"Merging of the association file information and VISPA2",
"stats produced an unexpected duplication of rows.",
"This can be caused by the presence of the same tag",
"sequences with different run names. Check your output",
"carefully"
)
)
rlang::inform(warn_dupl, class = "iss_dupl_row")
}
## Detect potential problems
addit_columns <- association_file_columns(TRUE) |>
dplyr::filter(.data$tag %in% c(
"subject",
"tissue",
"cell_marker",
"tp_days"
))
addit_columns_names <- addit_columns |>
dplyr::pull(.data$names)
addit_columns_names <- addit_columns_names[addit_columns_names %in%
colnames(association_file)]
iss_cols_in_af <- colnames(association_file)[
colnames(association_file) %in% iss_stats_specs()
]
missing_stats <- association_file |>
dplyr::filter(dplyr::if_all(
dplyr::all_of(iss_cols_in_af),
is.na
)) |>
dplyr::select(dplyr::all_of(c(
tags_to_cols$names,
pool_col,
addit_columns_names
))) |>
dplyr::distinct()
all_af_tags <- tags_to_cols |>
dplyr::bind_rows(addit_columns)
if (!is.null(report_path) && report_path == "INTERNAL") {
## If function was called from import_association_file
return(list(
stats = association_file,
report = list(
import = report,
miss = missing_stats,
af_tag_map = all_af_tags
)
))
}
## If report was requested produce it (with missing df)
withCallingHandlers(
{
.produce_report("vispa2_stats",
params = list(
iss_stats = report,
iss_stats_miss = missing_stats
),
path = report_path
)
},
error = function(cnd) {
rest <- findRestart("report_fail")
invokeRestart(rest, cnd)
}
)
return(association_file)
}
## If report was requested produce it
withCallingHandlers(
{
.produce_report("vispa2_stats",
params = list(iss_stats = report),
path = report_path
)
},
error = function(cnd) {
rest <- findRestart("report_fail")
invokeRestart(rest, cnd)
}
)
return(stats)
}
#' Import integration matrices from paths in the association file.
#'
#' @description
#' `r lifecycle::badge("stable")`
#' The function offers a convenient way of importing multiple integration
#' matrices in an automated or semi-automated way.
#' For more details see the "How to use import functions" vignette:
#' \code{vignette("workflow_start", package = "ISAnalytics")}
#'
#' @section Required tags:
#' The function will explicitly check for the presence of these tags:
#'
#' ```{r echo=FALSE, results="asis"}
#' all_tags <- available_tags()
#' needed <- all_tags |>
#' dplyr::mutate(
#' in_fun = purrr::map_lgl(.data$needed_in,
#' ~ "import_parallel_Vispa2Matrices" %in% .x)
#' ) |>
#' dplyr::filter(in_fun == TRUE) |>
#' dplyr::distinct(.data$tag) |>
#' dplyr::pull("tag")
#' cat(paste0("* ", needed, collapse="\n"))
#' ```
#'
#'
#' @param association_file Data frame imported via
#' \link{import_association_file} (with file system alignment)
#' @param quantification_type A vector of requested quantification_types.
#' Possible choices are \link{quantification_types}
#' @param matrix_type A single string representing the type of matrices
#' to be imported. Can only be one in "annotated" or "not_annotated".
#' @param workers A single integer representing the number of parallel
#' workers to use for the import
#' @param multi_quant_matrix If set to `TRUE` will produce a
#' multi-quantification matrix through \link{comparison_matrix}
#' instead of a list.
#' @param patterns A character vector of additional patterns to match on file
#' names. Please note that patterns must be regular expressions. Can be `NULL`
#' if no patterns need to be matched.
#' @param matching_opt A single value between \link{matching_options}
#' @param mode Only `AUTO` is supported. As of `ISAnalytics 1.8.3`, the value
#' `INTERACTIVE` is officially deprecated.
#' @param ... <[`dynamic-dots`][rlang::dyn-dots]> Additional named arguments
#' to pass to `comparison_matrix` and `import_single_Vispa2_matrix`
#'
#' @template report_path_param
#'
#' @importFrom rlang fn_fmls_names dots_list arg_match inform abort
#' @importFrom rlang eval_tidy call2
#'
#' @family Import functions
#' @return Either a multi-quantification matrix or a list of integration
#' matrices
#' @export
#'
#' @examples
#' fs_path <- generate_default_folder_structure(type = "correct")
#' af <- import_association_file(fs_path$af,
#' root = fs_path$root,
#' report_path = NULL
#' )
#' matrices <- import_parallel_Vispa2Matrices(af,
#' c("seqCount", "fragmentEstimate"),
#' mode = "AUTO", report_path = NULL
#' )
#' head(matrices)
import_parallel_Vispa2Matrices <- function(
association_file,
quantification_type = c("seqCount", "fragmentEstimate"),
matrix_type = c("annotated", "not_annotated"),
workers = 2,
multi_quant_matrix = TRUE,
report_path = default_report_path(),
patterns = NULL,
matching_opt = matching_options(),
mode = "AUTO",
...) {
.base_param_check(
association_file, quantification_type, matrix_type,
workers, multi_quant_matrix
)
matrix_type <- rlang::arg_match(matrix_type)
mode <- rlang::arg_match(mode)
## Collect dot args
dots_args <- rlang::dots_list(..., .named = TRUE, .homonyms = "first")
if (multi_quant_matrix == TRUE) {
mult_arg_names <- rlang::fn_fmls_names(comparison_matrix)
mult_arg_names <- mult_arg_names[mult_arg_names != "x"]
mult_args <- dots_args[names(dots_args) %in%
mult_arg_names]
}
import_matrix_arg_names <- rlang::fn_fmls_names(
import_single_Vispa2Matrix
)
import_matrix_arg_names <- import_matrix_arg_names[
!import_matrix_arg_names %in% c(
"path", "to_exclude",
"keep_excluded"
)
]
import_matrix_args <- dots_args[names(dots_args) %in%
import_matrix_arg_names]
### Renaming 2 args in import_matrix_args
if ("sample_names_to" %in% names(import_matrix_args)) {
arg_index <- which(names(import_matrix_args) == "sample_names_to")
names(import_matrix_args)[arg_index] <- "id_col_name"
}
if ("values_to" %in% names(import_matrix_args)) {
arg_index <- which(names(import_matrix_args) == "values_to")
names(import_matrix_args)[arg_index] <- "val_col_name"
}
### Add additional args to import_matrix_args
import_matrix_args <- append(
import_matrix_args,
list(call_mode = "INTERNAL")
)
association_file <- .pre_manage_af(association_file)
if (nrow(association_file) == 0) {
rlang::inform(.af_empty_msg())
return(NULL)
}
## Workflows
af_tags <- association_file_columns(TRUE)
proj_col <- af_tags |>
dplyr::filter(.data$tag == "project_id") |>
dplyr::pull(.data$names)
pool_col <- af_tags |>
dplyr::filter(.data$tag == "vispa_concatenate") |>
dplyr::pull(.data$names)
### --- Interactive
if (mode == "INTERACTIVE") {
lifecycle::deprecate_stop(
when = "1.8.3",
what = paste(
"import_parallel_Vispa2Matrices(mode",
"= 'does not accept INTERACTIVE anymore')"
)
)
} else {
### --- Auto
## In automatic workflow all projects and pools contained
## in the association
## file are considered. If more precise selection is needed on this,
## user
## should use the interactive version or filter the association file
## appropriately before calling the function.
### Evaluate patterns
if (!is.null(patterns)) {
stopifnot(is.character(patterns))
}
### Evaluate matching_opt
matching_option <- rlang::arg_match(matching_opt)
stopifnot(is.character(matching_option))
## Scan the appropriate file system paths and look for files
files_found <- .lookup_matrices_auto(
association_file, quantification_type,
matrix_type, patterns, matching_option,
proj_col, pool_col
)
## Manage missing files and duplicates
files_to_import <- .manage_anomalies_auto(
files_found,
proj_col, pool_col
)
}
## If files to import are 0 just terminate
if (nrow(files_to_import) == 0) {
rlang::abort("No files to import")
}
## Import
matrices <- .parallel_import_merge(
files_to_import, workers,
import_matrix_args
)
fimported <- matrices$summary
if (nrow(fimported) == 0) {
fimported <- NULL
}
matrices <- matrices$matrix
if (multi_quant_matrix == TRUE) {
matrices <- rlang::eval_tidy(rlang::call2(comparison_matrix,
x = matrices,
!!!mult_args
))
}
annotation_problems <- if (getOption("ISAnalytics.reports", TRUE) == TRUE &
!is.null(report_path)) {
tmp <- if (!multi_quant_matrix) {
comparison_matrix(matrices)
} else {
matrices
}
annotation_issues(tmp)
} else {
NULL
}
launch_params <- list()
if (!is.null(patterns)) {
launch_params[["patterns"]] <- patterns
launch_params[["matching_opt"]] <- matching_option
}
if ("checks_env" %in% names(dots_args) &&
is.environment(dots_args$checks_env)) {
rlang::env_bind(
dots_args$checks_env,
launch_params = launch_params,
set_vars = list(proj_col = proj_col, pool_col = pool_col),
files_found = files_found,
files_imp = fimported,
annot_prob = annotation_problems
)
}
withCallingHandlers(
{
.produce_report("matrix_imp",
params = list(
launch_params = launch_params,
set_vars = list(proj_col = proj_col, pool_col = pool_col),
files_found = files_found,
files_imp = fimported,
annot_prob = annotation_problems
),
path = report_path
)
},
error = function(cnd) {
rest <- findRestart("report_fail")
invokeRestart(rest, cnd)
}
)
return(matrices)
}
#' Import integration matrices from association file.
#'
#' @description `r lifecycle::badge("defunct")`
#' This function was deprecated to avoid redundancy.
#' Please refer to \code{\link{import_parallel_Vispa2Matrices}}.
#'
#' @importFrom lifecycle deprecate_warn
#' @importFrom rlang list2 `!!!`
#'
#' @export
#' @keywords internal
#' @return A data frame or a list
import_parallel_Vispa2Matrices_interactive <- function(
association_file,
quantification_type,
matrix_type = "annotated",
workers = 2,
multi_quant_matrix = TRUE,
export_report_path = NULL,
...) {
lifecycle::deprecate_stop(
when = "1.3.3",
what = "import_parallel_Vispa2Matrices_interactive()",
with = "import_parallel_Vispa2Matrices()",
details = c(paste0(
"Use import_parallel",
"_Vispa2Matrices(mode = 'INTERACTIVE') ",
"for interactive mode or ",
"import_parallel",
"_Vispa2Matrices(mode = 'AUTO') ",
"for automatic mode"
))
)
}
#' Import integration matrices from association file.
#'
#' @description `r lifecycle::badge("defunct")`
#' This function was deprecated to avoid redundancy.
#' Please refer to \code{\link{import_parallel_Vispa2Matrices}}.
#' @importFrom lifecycle deprecate_warn
#' @importFrom rlang list2 `!!!`
#' @export
#' @keywords internal
#' @return A data frame or a list
import_parallel_Vispa2Matrices_auto <- function(
association_file,
quantification_type,
matrix_type = "annotated",
workers = 2,
multi_quant_matrix = TRUE,
patterns = NULL,
matching_opt = matching_options(),
export_report_path = NULL,
...) {
lifecycle::deprecate_stop(
when = "1.3.3",
what = "import_parallel_Vispa2Matrices_auto()",
with = "import_parallel_Vispa2Matrices()",
details = c(paste0(
"Use import_parallel",
"_Vispa2Matrices(mode = 'INTERACTIVE') ",
"for interactive mode or ",
"import_parallel",
"_Vispa2Matrices(mode = 'AUTO') ",
"for automatic mode"
))
)
}
#' Check for genomic annotation problems in IS matrices.
#'
#' @description `r lifecycle::badge("experimental")`
#' This helper function checks if each individual integration site,
#' identified by the `mandatory_IS_vars()`,
#' has been annotated with two or more distinct gene symbols.
#'
#' @param matrix Either a single matrix or a list of matrices, ideally obtained
#' via `import_parallel_Vispa2Matrices()` or `import_single_Vispa2Matrix()`
#'
#' @return Either `NULL` if no issues were detected or 1 or more data frames
#' with genomic coordinates of the IS and the number of distinct
#' genes associated
#' @export
#'
#' @family Import functions helpers
#'
#' @examples
#' data("integration_matrices", package = "ISAnalytics")
#' annotation_issues(integration_matrices)
annotation_issues <- function(matrix) {
stopifnot(is.list(matrix))
find_probs <- function(m) {
needed <- c(mandatory_IS_vars(), annotation_IS_vars())
if (!all(needed %in% colnames(m))) {
rlang::inform(
.missing_needed_cols(needed[!needed %in% colnames(m)])
)
return(NULL)
}
tmp <- m |>
dplyr::select(dplyr::all_of(c(
mandatory_IS_vars(),
annotation_IS_vars()
))) |>
dplyr::distinct() |>
dplyr::group_by(dplyr::across(
dplyr::all_of(mandatory_IS_vars())
)) |>
dplyr::summarise(distinct_genes = dplyr::n())
if (any(tmp$distinct_genes > 1)) {
tmp |>
dplyr::filter(.data$distinct_genes > 1)
} else {
NULL
}
}
if (is.data.frame(matrix)) {
probs <- find_probs(matrix)
if (is.null(probs) & getOption("ISAnalytics.verbose", TRUE) == TRUE) {
rlang::inform("No annotation issues found")
}
return(probs)
}
probs <- purrr::map(matrix, find_probs)
if (all(is.null(probs)) & getOption("ISAnalytics.verbose", TRUE) == TRUE) {
rlang::inform("No annotation issues found")
}
return(probs)
}
#' Possible choices for the `quantification_type` parameter.
#'
#' These are all the possible values for the
#' `quantification_type` parameter in
#' `import_parallel_vispa2Matrices_interactive` and
#' `import_parallel_vispa2Matrices_auto`.
#'
#' @details The possible values are:
#' * fragmentEstimate
#' * seqCount
#' * barcodeCount
#' * cellCount
#' * ShsCount
#' @return A vector of characters for quantification types
#' @export
#' @seealso \code{\link{import_parallel_Vispa2Matrices_interactive}},
#' \code{\link{import_parallel_Vispa2Matrices_auto}}
#'
#' @family Import functions helpers
#'
#' @examples
#' quant_types <- quantification_types()
quantification_types <- function() {
c(
"fragmentEstimate", "seqCount",
"barcodeCount", "cellCount",
"ShsCount"
)
}
#' Possible choices for the `matching_opt` parameter.
#'
#' These are all the possible values for the `matching_opt` parameter in
#' `import_parallel_vispa2Matrices_auto`.
#' @details The values "ANY", "ALL" and "OPTIONAL", represent how the patterns
#' should be matched, more specifically
#' * ANY = look only for files that match AT LEAST one of the
#' patterns specified
#' * ALL = look only for files that match ALL of the patterns specified
#' * OPTIONAL = look preferentially for files that match, in order, all
#' patterns or any pattern and if no match is found return what is found (keep
#' in mind that duplicates are discarded in automatic mode)
#' @return A vector of characters for matching_opt
#' @export
#' @family Import functions helpers
#' @seealso \code{\link{import_parallel_Vispa2Matrices_auto}}
#'
#' @examples
#' opts <- matching_options()
matching_options <- function() {
c("ANY", "ALL", "OPTIONAL")
}
#' Possible choices for the `dates_format` parameter in
#' `import_association_file`,
#' `import_parallel_vispa2Matrices_interactive` and
#' `import_parallel_vispa2Matrices_auto`.
#'
#' All options correspond to `lubridate` functions, see more in the dedicated
#' package documentation.
#'
#' @family Import functions helpers
#' @return A character vector
#' @export
#' @seealso \code{\link{import_association_file}},
#' \code{\link{import_parallel_Vispa2Matrices_auto}}
#'
#' @examples
#' date_formats()
date_formats <- function() {
c(
"ymd", "ydm", "mdy", "myd", "dmy", "dym", "yq", "ym", "my",
"ymd_hms", "ymd_hm", "ymd_h", "dmy_hms", "dmy_hm",
"dmy_h", "mdy_hms", "mdy_hm", "mdy_h", "ydm_hms", "ydm_hm", "ydm_h"
)
}
#' Default regex prefixes for Vispa2 stats files.
#'
#' Note that each element is a regular expression.
#'
#' @family Import functions helpers
#' @return A character vector of regexes
#' @export
#'
#' @examples
#' default_iss_file_prefixes()
default_iss_file_prefixes <- function() {
c("stats\\.sequence.", "stats\\.matrix.")
}
#' Default transformations to apply to association file columns.
#'
#' @description
#' A list of default transformations to apply to the association file columns
#' after importing it via `import_association_file()`
#'
#' @param convert_tp The value of the argument `convert_tp` in the call
#' to `import_association_file()`
#'
#' @family Import functions helpers
#' @return A named list of lambdas
#' @export
#'
#' @examples
#' default_af_transform(TRUE)
default_af_transform <- function(convert_tp) {
if (convert_tp) {
return(list(
TimepointMonths = ~ dplyr::if_else(
is.na(.x),
NA_character_,
stringr::str_pad(
as.character(.x),
pad = "0", side = "left",
width = max(nchar(as.character(.x[!is.na(.x)])),
na.rm = TRUE) + 1
)),
TimepointYears = ~ dplyr::if_else(
is.na(.x),
NA_character_,
stringr::str_pad(as.character(.x),
pad = "0", side = "left",
width = max(nchar(as.character(.x[!is.na(.x)])),
na.rm = TRUE) + 1
))
))
}
return(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.