R/vsVolcanoMatrix-house-keeping.R

Defines functions .vomat.comp .vomat.ranker .vomat.col.count .getEdgeVolcanoMatrix .getCuffVolcanoMatrix .getDeseqVolcanoMatrix

#-----------------------------------------------------#
# Title:  ggviseq - House Keeping - volcano matrix    #
# Author: Brandon Monier (brandon.monier@sdstate.edu) #
# Date:   04.27.17                                    #
#-----------------------------------------------------#

.vomat.comp <- function(padj, lfc) {
    # Color
    gry <- paste0('padj > ', padj)
    blu <- paste0('padj < ', padj, ' & |lfc| > ', lfc)
    grn <- paste0('padj < ', padj, ' & |lfc| < ', lfc)

    # Lines and labels
    vline1 <- geom_vline(
        xintercept = 0,
        color = 'red3',
        size = 0.5,
        alpha = 0.8,
        linetype = 'longdash'
    )
    vline2 <- geom_vline(
        xintercept = -lfc,
        color = 'grey32',
        size = 0.5,
        alpha = 0.8,
        linetype = 'dashed'
    )
    vline3 <- geom_vline(
        xintercept = lfc,
        color = 'grey32',
        size = 0.5,
        alpha = 0.8,
        linetype = 'dashed'
    )
    hline1 <- geom_hline(
        yintercept = -log10(padj),
        color = 'grey32',
        size = 0.5,
        alpha = 0.8,
        linetype = 'dashed'
    )
    x.lab <- xlab(expression(paste('log'['2'], ' fold change')))
    y.lab <- ylab(expression(paste('-log'['10'], '(p-value)')))
    comp.l <- list(
        gry = gry,
        blu = blu,
        grn = grn,
        vline1 = vline1,
        vline2 = vline2,
        vline3 = vline3,
        hline1 = hline1,
        x.lab = x.lab,
        y.lab = y.lab
    )
}



.vomat.ranker <- function(data, padj, lfc, x.lim) {
    dat <- data
    # Color
    dat$color <- 'grey'
    dat$color[dat$padj <= padj & abs(dat$logFC) > lfc] <- 'blue'
    dat$color[dat$padj <= padj & abs(dat$logFC) < lfc] <- 'green'
    # Size
    dat$size <- .vo.out.ranker(dat$logFC, x.lim[2])
    # Shape
    dat$shape <- 'circle'
    dat$shape[dat$logFC < x.lim[1]] <- 'l.triangle'
    dat$shape[dat$logFC > x.lim[2]] <- 'r.triangle'
    return(dat)
}



.vomat.col.count <- function(data) {
    tab <- as.data.frame(t(table(data$color, paste(data$id_x, data$id_y))))
    b.l <- tab[which(tab$Var2 == 'blue'), ]
    g.l <- tab[which(tab$Var2 == 'green'), ]
    col.l <- list(blue = b.l, green = g.l)
    return(col.l)
}



.getEdgeVolcanoMatrix <- function(data) {
    v_1 <- as.vector(unique(data$sample$group))
    m_a <- expand.grid(v_1, v_1)
    m_a <- as.matrix(m_a[which(m_a$Var1 != m_a$Var2), ])
    l_a <- split(m_a, row(m_a))

    l1 <- lapply(seq_along(l_a), function(i) {
        tab <- .getEdgeVolcano(l_a[[i]][1], l_a[[i]][2], data)
        tab$id_x <- l_a[[i]][1]
        tab$id_y <- l_a[[i]][2]
        tab
    })
    dat1 <- do.call('rbind', l1)
    dat1 <- dat1[, c(7:8, 2:3, 4:6)]
    dat1$id_x <- as.factor(dat1$id_x)
    dat1$id_y <- as.factor(dat1$id_y)
    return(dat1)
}



.getCuffVolcanoMatrix <- function(data) {
    dat <- data
    v_1 <- union(dat$sample_1, dat$sample_2)
    m_a <- expand.grid(v_1, v_1)
    m_a <- as.matrix(m_a[which(m_a$Var1 != m_a$Var2), ])
    l_a <- split(m_a, row(m_a))

    l1 <- lapply(seq_along(l_a), function(i) {
        tab <- .getCuffVolcano(l_a[[i]][1], l_a[[i]][2], data)
        tab$id_x <- l_a[[i]][1]
        tab$id_y <- l_a[[i]][2]
        tab
    })
    dat1 <- do.call('rbind', l1)
    dat1 <- dat1[, c(1, 7:8, 2:6)]
    dat1$id_x <- as.factor(dat1$id_x)
    dat1$id_y <- as.factor(dat1$id_y)
    return(dat1)
}



.getDeseqVolcanoMatrix <- function(data, d.factor) {
    if(is.null(d.factor)) {
        stop(
            'This appears to be a DESeq object.
            Please state d.factor variable.'
        )
    }

    dat <- as.data.frame(colData(data))
    v_1 <- as.vector(unique(dat[[d.factor]]))
    m_a <- expand.grid(v_1, v_1)
    m_a <- as.matrix(m_a[which(m_a$Var1 != m_a$Var2), ])
    l_a <- split(m_a, row(m_a))

    l1 <- lapply(seq_along(l_a), function(i) {
        tab <- .getDeseqVolcano(l_a[[i]][1], l_a[[i]][2], data, d.factor)
        tab$id_x <- l_a[[i]][1]
        tab$id_y <- l_a[[i]][2]
        tab
    })
    dat1 <- do.call('rbind', l1)
    dat1 <- dat1[, c(2:3, 7:8, 4:6, 1)]
    dat1$id_x <- as.factor(dat1$id_x)
    dat1$id_y <- as.factor(dat1$id_y)
    return(dat1)
}
btmonier/ggviseq documentation built on July 16, 2019, 7:57 a.m.