R/convert_type.R

Defines functions convert_from_icm convert_from_pwm convert_from_ppm convert_from_pcm MATRIX_ppm_to_pcm MATRIX_ppm_to_icm MATRIX_ppm_to_pwm convert_type_single convert_type_internal convert_type

Documented in convert_type

#' Convert \linkS4class{universalmotif} type.
#'
#' Switch between position count matrix (PCM), position probability matrix
#' (PPM), position weight matrix (PWM), and information count matrix (ICM)
#' types. See the "Introduction to sequence motifs" vignette for details. Please
#' also note that type conversion occurs implicitly throughout the
#' `universalmotif` package, so there is generally no need to perform this
#' manual conversion. Also please be aware that the message concerning
#' pseudocount-adjusting motifs can be disabled via
#' `options(pseudocount.warning=FALSE)`.
#'
#' @param motifs See [convert_motifs()] for acceptable formats.
#' @param type `character(1)` One of `c('PCM', 'PPM', 'PWM', 'ICM')`.
#' @param pseudocount `numeric(1)` Correction to be applied to prevent `-Inf`
#'   from appearing in PWM matrices. If missing, the pseudocount stored in the
#'   \linkS4class{universalmotif} 'pseudocount' slot will be
#'   used.
#' @param nsize_correction `logical(1)` If true, the ICM
#'   at each position will be corrected to account
#'   for small sample sizes. Only used if `relative_entropy = FALSE`.
#' @param relative_entropy `logical(1)` If true, the ICM will be
#'   calculated as relative entropy. See details.
#'
#' @return See [convert_motifs()] for possible output motif objects.
#'
#' @details
#'    ## PCM
#'    Position count matrix (PCM), also known as position frequency matrix
#'    (PFM). For n sequences from which the motif was built, each position is
#'    represented by the numbers of each letter at that position. In theory
#'    all positions should have sums equal to n, but not all databases are
#'    this consistent. If converting from another type to PCM, column sums
#'    will be equal to the 'nsites' slot. If empty, 100 is used.
#'
#'    ## PPM
#'    Position probability matrix (PPM), also known as position frequency
#'    matrix (PFM). At each position, the probability of individual letters
#'    is calculated by dividing the count for that letter by the total sum of
#'    counts at that position (`letter_count / position_total`).
#'    As a result, each position will sum to 1. Letters with counts of 0 will
#'    thus have a probability of 0, which can be undesirable when searching for
#'    motifs in a set of sequences. To avoid this a pseudocount can be added
#'    (`(letter_count + pseudocount) / (position_total + pseudocount)`).
#'
#'    ## PWM
#'    Position weight matrix (PWM; Stormo et al. (1982)),
#'    also known as position-specific weight
#'    matrix (PSWM), position-specific scoring matrix (PSSM), or
#'    log-odds matrix. At each position, each letter is represented by it's
#'    log-likelihood (`log2(letter_probability / background_probility)`),
#'    which is normalized using the background letter frequencies. A PWM matrix
#'    is constructed from a PPM. If any position has 0-probability letters to
#'    which pseudocounts were not added, then the final log-likelihood of these
#'    letters will be `-Inf`.
#'
#'    ## ICM
#'    Information content matrix (ICM; Schneider and Stephens 1990).
#'    An ICM is a PPM where each letter probability is multiplied by the total
#'    information content at that position. The information content of each
#'    position is determined as: `totalIC - Hi`, where the total information
#'    totalIC
#'
#'    `totalIC <- log2(alphabet_length)`, and the Shannon entropy
#'    (Shannon 1948) for a specific
#'    position (Hi)
#'
#'    `Hi <- -sum(sapply(alphabet_frequencies, function(x) x * log(2))`.
#'
#'    As a result, the total sum or height of each position is representative of
#'    it's sequence conservation, measured in the unit 'bits', which is a unit
#'    of energy (Schneider 1991; see
#'    \url{https://fr-s-schneider.ncifcrf.gov/logorecommendations.html}
#'    for more information). However not all programs will calculate
#'    information content the same. Some will 'correct' the total information
#'    content at each position using a correction factor as described by
#'    Schneider et al. (1986). This correction can
#'    applied by setting `nsize_correction = TRUE`, however it will only
#'    be applied if the 'nsites' slot is not empty. This is done using
#'    `TFBSTools:::schneider_correction`
#'    (Tan and Lenhard 2016). As such, converting from an ICM to
#'    which some form of correction has been applied will result in a
#'    PCM/PPM/PWM with slight inaccuracies.
#'
#'    Another method of calculating information content is calculating the
#'    relative entropy, also known as Kullback-Leibler divergence
#'    (Kullback and Leibler 1951). This accounts for background
#'    frequencies, which
#'    can be useful for genomes with a heavy imbalance in letter frequencies.
#'    For each position, the individual letter frequencies are calculated as
#'    `letter_freq * log2(letter_freq / bkg_freq)`. When calculating
#'    information content using Shannon entropy, the maximum content for
#'    each position will always be `log2(alphabet_length)`. This does
#'    not hold for information content calculated as relative entropy.
#'    Please note that conversion from ICM assumes the information content
#'    was _not_ calculated as relative entropy.
#'
#' @examples
#' jaspar.pcm <- read_jaspar(system.file("extdata", "jaspar.txt",
#'                                       package = "universalmotif"))
#'
#' ## The motifs pseudocounts are 1: these will be used in the PCM->PPM
#' ## calculation
#' jaspar.pwm <- convert_type(jaspar.pcm, type = "PPM")
#'
#' ## Setting pseudocount to 0 will prevent any correction from being
#' ## applied to PPM/PWM matrices, overriding the motifs own pseudocounts
#' jaspar.pwm <- convert_type(jaspar.pcm, type = "PWM", pseudocount = 0)
#'
#' @references
#'
#' Kullback S, Leibler RA (1951). “On information and sufficiency.”
#' *The Annals of Mathematical Statistics*, **22**, 79-86.
#'
#' Nishida K, Frith MC, Nakai K (2009). “Pseudocounts for
#' transcription factor binding sites.” *Nucleic Acids Research*,
#' **37**, 939-944.
#'
#' Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986).
#' “Information content of binding sites on nucleotide sequences.”
#' *Journal of Molecular Biology*, **188**, 415-431.
#'
#' Schneider TD, Stephens RM (1990). “Sequence Logos: A New Way to
#' Display Consensus Sequences.” *Nucleic Acids Research*, **18**,
#' 6097-6100.
#'
#' Schneider TD (1991). “Theory of Molecular Machines. II. Energy
#' Dissipation from Molecular Machines.” *Journal of Theoretical
#' Biology*, **148**, 125-137.
#'
#' Shannon CE (1948). “A Mathematical Theory of Communication.” *Bell
#' System Technical Journal*, **27**, 379-423.
#'
#' Stormo GD, Schneider TD, Gold L, Ehrenfeucht A (1982). “Use of the
#' Perceptron algorithm to distinguish translational initiation sites
#' in E. coli.” *Nucleic Acids Research*, **10**, 2997-3011.
#'
#' Tan G, Lenhard B (2016). “TFBSTools: an R/Bioconductor package for
#' transcription factor binding site analysis.” *Bioinformatics*,
#' **32**, 1555-1556. doi: 10.1093/bioinformatics/btw024.
#'
#' @author Benjamin Jean-Marie Tremblay, \email{benjamin.tremblay@@uwaterloo.ca}
#' @seealso [convert_motifs()]
#' @export
convert_type <- function(motifs, type, pseudocount, nsize_correction = FALSE,
                         relative_entropy = FALSE) {

  # param check --------------------------------------------
  args <- as.list(environment())
  all_checks <- character(0)
  if (missing(type) || !type %in% c("PCM", "PPM", "PWM", "ICM")) {
    if (missing(type)) type <- ""
    type_check <- paste0(" * Incorrect 'type': expected `PCM`, `PPM`, `PWM` ",
                         "or `ICM`; got `", type, "`")
    all_checks <- c(all_checks, type_check)
  }
  char_check <- check_fun_params(list(type = args$type), 1, FALSE, TYPE_CHAR)
  num_check <- check_fun_params(list(pseudocount = args$pseudocount),
                                1, TRUE, TYPE_NUM)
  logi_check <- check_fun_params(list(nsize_correction = args$nsize_correction,
                                      relative_entropy = args$relative_entropy),
                                 c(1, 1), c(FALSE, FALSE), TYPE_LOGI)
  all_checks <- c(all_checks, char_check, num_check, logi_check)
  if (length(all_checks) > 0) stop(all_checks_collapse(all_checks))
  #---------------------------------------------------------

  if (is.list(motifs)) was_list <- TRUE else was_list <- FALSE

  if (is.list(motifs)) CLASS_IN <- vapply(motifs, .internal_convert, "character")
  else CLASS_IN <- .internal_convert(motifs)
  motifs <- convert_motifs(motifs)
  if (!is.list(motifs)) motifs <- list(motifs)
  if (missing(pseudocount)) pseudocount <- NULL

  if (type %in% c("PCM", "PWM")) {
    nsiteLens <- vapply(lapply(motifs, function(x) x@nsites), length, integer(1))
    for (i in which(nsiteLens == 0)) {
      message(wmsg("Note: motif [", shrink_string(motifs[[i]]@name), "] has an empty ",
          "nsites slot, using 100."))
    }
  }

  motifs <- lapply(motifs, function(x) convert_type_single(x, type, pseudocount,
                                                           nsize_correction,
                                                           relative_entropy))

  motifs <- .internal_convert(motifs, unique(CLASS_IN))
  if (length(motifs) == 1 && !was_list) motifs <- motifs[[1]]
  motifs

}

# Skips validObject_universalmotif() call from convert_motifs() for
# universalmotif objects. Not sure if it's a good idea to skip check
# on the way out.
convert_type_internal <- function(motifs, type, pseudocount,
                                  nsize_correction = FALSE,
                                  relative_entropy = FALSE) {

  if (missing(pseudocount)) pseudocount <- NULL
  was.list <- FALSE
  if (!is.list(motifs)) motifs <- list(motifs)
  else was.list <- TRUE

  motifs <- lapply(motifs, function(x) convert_type_single(x, type, pseudocount,
                                                           nsize_correction,
                                                           relative_entropy))

  if (length(motifs) == 1 && !was.list) motifs[[1]] else motifs

}

convert_type_single <- function(motif, type, pseudocount,
                                nsize_correction = FALSE,
                                relative_entropy = FALSE) {

  if (length(motif@bkg) %% nrow(motif@motif) != 0)
    stop(wmsg("length of bkg must be divisible by alphabet length"))

  in_type <- motif@type

  if (in_type == type) return(motif)

  if (is.null(pseudocount)) {
    pseudocount <- motif@pseudocount
  } else {
    motif@pseudocount <- pseudocount
  }
  bkg <- motif@bkg[rownames(motif@motif)]
  if (anyNA(bkg)) bkg <- motif@bkg[seq_len(nrow(motif@motif))]
  if (any(bkg == 0)) bkg <- pcm_to_ppmC(bkg * 1000, 1)

  if (length(motif@nsites) == 0) {
    nsites <- 100
  } else {
    nsites <- motif@nsites
  }

  motif <- switch(in_type,
                  "PCM" = convert_from_pcm(motif, type, pseudocount, bkg, nsites,
                                           nsize_correction, relative_entropy),
                  "PPM" = convert_from_ppm(motif, type, pseudocount, bkg, nsites,
                                           nsize_correction, relative_entropy),
                  "PWM" = convert_from_pwm(motif, type, pseudocount, bkg, nsites,
                                           nsize_correction, relative_entropy),
                  "ICM" = convert_from_icm(motif, type, pseudocount, bkg, nsites))

  validObject_universalmotif(motif)
  motif

}

# Not used within convert_type()
MATRIX_ppm_to_pwm <- function(mat, bkg, pseudocount = 1, nsites = 100) {

  if (missing(bkg) || length(bkg) == 0 || anyNA(bkg) ||
      length(bkg) != nrow(mat) || is.null(bkg))
    bkg <- rep(1 / nrow(mat), nrow(mat))

  if (length(nsites) == 0 || nsites <= 1) nsites <- 100

  if (any(bkg == 0)) bkg <- pcm_to_ppmC(bkg * 1000, 1)

  if (pseudocount == 0) pseudocount <- 1

  mat <- apply(mat, 2, ppm_to_pwmC, bkg = bkg, pseudocount = pseudocount,
               nsites = nsites)

  mat

}

MATRIX_ppm_to_icm <- function(mat, bkg, relative_entropy = FALSE) {

  if (missing(bkg) || length(bkg) == 0 || anyNA(bkg) ||
      length(bkg) != nrow(mat) || is.null(bkg))
    bkg <- rep(1 / nrow(mat), nrow(mat))

  if (any(bkg == 0)) bkg <- pcm_to_ppmC(bkg * 1000, 1)

  mat <- apply(mat, 2, ppm_to_icmC, bkg = bkg, relative_entropy = relative_entropy)

  mat

}

MATRIX_ppm_to_pcm <- function(mat, nsites = 100) {

  if (missing(nsites) || length(nsites) == 0 || anyNA(nsites) || is.null(nsites))
    nsites <- 100

  apply(mat, 2, ppm_to_pcmC, nsites = nsites)

}

convert_from_pcm <- function(motif, type, pseudocount, bkg, nsites,
                             nsize_correction = FALSE, relative_entropy = FALSE) {

  alph <- rownames(motif@motif)

  switch(type,

    "PPM" = {

      motif@motif <- apply(motif@motif, 2, pcm_to_ppmC,
                           pseudocount = pseudocount)
      motif@type <- "PPM"

    },

    "PWM" = {

      motif@motif <- apply(motif@motif, 2, pcm_to_ppmC,
                           pseudocount = pseudocount)
      motif@motif <- apply(motif@motif, 2, ppm_to_pwmC,
                           bkg = bkg,
                           pseudocount = pseudocount,
                           nsites = nsites)
      motif@type <- "PWM"

    },

    "ICM" = {

      motif@motif <- apply(motif@motif, 2, pcm_to_ppmC,
                           pseudocount = pseudocount)
      if (nsize_correction) {
        motif@motif <- apply(motif@motif, 2, ppm_to_icm,
                             bkg = bkg,
                             nsites = nsites,
                             schneider_correction = nsize_correction,
                             relative_entropy = relative_entropy)
      } else {
        motif@motif <- apply(motif@motif, 2, ppm_to_icmC,
                             bkg = bkg,
                             relative_entropy = relative_entropy)
      }
      motif@type <- "ICM"

    })

  rownames(motif@motif) <- alph
  motif@motif[is.na(motif@motif)] <- 0

  motif

}

convert_from_ppm <- function(motif, type, pseudocount, bkg, nsites,
                             nsize_correction = FALSE, relative_entropy = FALSE) {

  alph <- rownames(motif@motif)

  switch(type,

    "PCM" = {

      motif@motif <- apply(motif@motif, 2, ppm_to_pcmC,
                           nsites = nsites)
      motif@type <- "PCM"

    },

    "PWM" = {

      motif@motif <- apply(motif@motif, 2, ppm_to_pwmC,
                           bkg = bkg,
                           pseudocount = pseudocount,
                           nsites = nsites)
      motif@type <- "PWM"

    },

    "ICM" = {

      if (nsize_correction) {
        motif@motif <- apply(motif@motif, 2, ppm_to_icm,
                             bkg = bkg,
                             nsites = nsites,
                             schneider_correction = nsize_correction,
                             relative_entropy = relative_entropy)
      } else {
        motif@motif <- apply(motif@motif, 2, ppm_to_icmC,
                             bkg = bkg,
                             relative_entropy = relative_entropy)
      }
      motif@type <- "ICM"

    })

  rownames(motif@motif) <- alph
  motif@motif[is.na(motif@motif)] <- 0

  motif

}

convert_from_pwm <- function(motif, type, pseudocount, bkg, nsites,
                             nsize_correction = FALSE, relative_entropy = FALSE) {

  alph <- rownames(motif@motif)

  switch(type,

    "PCM" = {

      motif@motif <- apply(motif@motif, 2, pwm_to_ppmC,
                           bkg = bkg)
      motif@motif <- apply(motif@motif, 2, ppm_to_pcmC,
                           nsites = nsites)
      motif@type <- "PCM"

    },

    "PPM" = {

      motif@motif <- apply(motif@motif, 2, pwm_to_ppmC,
                           bkg = bkg)
      motif@type <- "PPM"

    },

    "ICM" = {

      motif@motif <- apply(motif@motif, 2, pwm_to_ppmC,
                           bkg = bkg)
      if (nsize_correction) {
        motif@motif <- apply(motif@motif, 2, ppm_to_icm,
                             bkg = bkg,
                             nsites = nsites,
                             schneider_correction = nsize_correction,
                             relative_entropy = relative_entropy)
      } else {
        motif@motif <- apply(motif@motif, 2, ppm_to_icmC,
                             bkg = bkg,
                             relative_entropy = relative_entropy)
      }
      motif@type <- "ICM"

    })

  rownames(motif@motif) <- alph
  motif@motif[is.na(motif@motif)] <- 0

  motif

}

convert_from_icm <- function(motif, type, pseudocount, bkg, nsites) {

  alph <- rownames(motif@motif)

  motif@motif <- apply(motif@motif, 2, icm_to_ppmC)

  switch(type,

    "PCM" = {

      motif@motif <- apply(motif@motif, 2, ppm_to_pcmC,
                           nsites = nsites)
      motif@type <- "PCM"

    },

    "PPM" = {

      motif@type <- "PPM"

    },

    "PWM" = {

      motif@motif <- apply(motif@motif, 2, ppm_to_pwmC,
                           bkg = bkg,
                           pseudocount = pseudocount,
                           nsites = nsites)
      motif@type <- "PWM"

    })

  rownames(motif@motif) <- alph
  motif@motif[is.na(motif@motif)] <- 0

  motif

}
bjmt/universalmotif documentation built on Nov. 16, 2024, 7:38 a.m.