R/ovcCrijns.R

Defines functions ovcCrijns

Documented in ovcCrijns

#' @title Function to compute the subtype scores and risk classifications
#'   for the prognostic signature published by Crinjs et al.
#'
#' @description
#' This function computes subtype scores and risk classifications from gene
#' expression values using the weights published by Crijns et al.
#'
#' @usage
#' ovcCrijns(data, annot, hgs,
#'   gmap = c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "unigene"),
#'   do.mapping = FALSE, verbose = FALSE)
#'
#' @param data	Matrix of gene expressions with samples in rows and probes in
#'   columns, dimnames being properly defined.
#' @param annot	Matrix of annotations with one column named as gmap, dimnames
#'   being properly defined.
#' @param hgs vector of booleans with TRUE represents the ovarian cancer
#'   patients who have a high grade, late stage, serous tumor, FALSE otherwise.
#'   This is particularly important for properly rescaling the data. If hgs is
#'   missing, all the patients will be used to rescale the subtype score.
#' @param gmap character string containing the biomaRt attribute to use for
#'   mapping if do.mapping=TRUE
#' @param do.mapping TRUE if the mapping through Entrez Gene ids must be
#'   performed (in case of ambiguities, the most variant probe is kept for each
#'   gene), FALSE otherwise.
#' @param verbose TRUE to print informative messages, FALSE otherwise.
#'
#' @details
#' Note that the original algorithm has not been implemented as it necessitates
#'   refitting of the model weights in each new dataset. However the current
#'   implementation should give similar results.
#'
#' @return
#' A list with items:
#' - score: Continuous signature scores.
#' - risk: Binary risk classification, 1 being high risk and 0 being low risk.
#' - mapping: Mapping used if necessary.
#' - probe: If mapping is performed, this matrix contains the correspondence.
#'   between the gene list (aka signature) and gene expression data.
#'
#' @references
#' Crijns APG, Fehrmann RSN, de Jong S, Gerbens F, Meersma G J, Klip HG,
#'   Hollema H, Hofstra RMW, te Meerman GJ, de Vries EGE, van der Zee AGJ (2009)
#'   "Survival-Related Profile, Pathways, and Transcription Factors in Ovarian
#'   Cancer" PLoS Medicine, 6(2):e1000024.
#'
#' @seealso
#' [genefu::sigOvcCrijns]
#'
#' @examples
#' # load the ovsCrijns signature
#' data(sigOvcCrijns)
#' # load NKI dataset
#' data(nkis)
#' colnames(annot.nkis)[is.element(colnames(annot.nkis), "EntrezGene.ID")] <- 
#'   "entrezgene"
#' # compute relapse score
#' ovcCrijns.nkis <- ovcCrijns(data=data.nkis, annot=annot.nkis, 
#'   gmap="entrezgene", do.mapping=TRUE)
#' table(ovcCrijns.nkis$risk)
#'
#' @md
#' @export
#' @name ovcCrijns
ovcCrijns <- function(data, annot, hgs, gmap=c("entrezgene", "ensembl_gene_id",
    "hgnc_symbol", "unigene"), do.mapping=FALSE, verbose=FALSE)
{
    if (!exists('sigOvcCrijns')) data(sigOvcCrijns, envir=environment())
    
    gmap <- match.arg(gmap)
    if(missing(hgs)) { hgs <- rep(TRUE, nrow(data)) }
    if(do.mapping) {
        if(!is.element(gmap, colnames(annot))) { stop("gmap is not a column of annot!") }
        if(verbose) { message("the most variant probe is selected for each gene") }
        sigt <- sigOvcCrijns[order(abs(sigOvcCrijns[ ,"weight"]), decreasing=FALSE), ,drop=FALSE]
        sigt <- sigt[!duplicated(sigt[ ,gmap]), ,drop=FALSE]
        gid2 <- sigt[ ,gmap]
        names(gid2) <- rownames(sigt)
        gid1 <- annot[ ,gmap]
        names(gid1) <- colnames(data)
        rr <- geneid.map(geneid1=gid1, data1=data, geneid2=gid2)
        data <- rr$data1
        annot <- annot[colnames(data), ,drop=FALSE]
        sigt <- sigt[names(rr$geneid2), ,drop=FALSE]
        pold <- colnames(data)
        pold2 <- rownames(sigt)
        colnames(data) <- rownames(annot) <- rownames(sigt) <- paste("geneid", annot[ ,gmap], sep=".")
        mymapping <- c("mapped"=nrow(sigt), "total"=nrow(sigOvcCrijns))
        myprobe <- data.frame("probe"=pold, "gene.map"=annot[ ,gmap], "new.probe"=pold2)
    } else {
        gix <- intersect(rownames(sigOvcCrijns), colnames(data))
        if(length(gix) < 2) { stop("data do not contain enough gene from the ovcTCGA signature!") }
        data <- data[ ,gix,drop=FALSE]
        annot <- annot[gix, ,drop=FALSE]
        mymapping <- c("mapped"=length(gix), "total"=nrow(sigOvcCrijns))
        myprobe <- data.frame("probe"=gix, "gene.map"=annot[ ,gmap], "new.probe"=gix)
        sigt <- sigOvcCrijns[gix, ,drop=FALSE]
    }
    ## transform the gene expression in Z-scores
    data <- scale(data)
    pscore <- genefu::sig.score(x=data.frame("probe"=colnames(data), "EntrezGene.ID"=annot[ ,gmap], "coefficient"=sigt[ ,"weight"]), data=data, annot=annot, do.mapping=FALSE, signed=FALSE)$score
    prisk <- as.numeric(pscore > median(pscore, na.rm=TRUE))
	names(prisk) <- names(pscore) <- rownames(data)
	return (list("score"=pscore, "risk"=prisk, "mapping"=mymapping, "probe"=myprobe))
}
bhklab/genefu documentation built on June 2, 2022, 2:56 p.m.