ps.cluster | R Documentation |
This function computes the prediction strength of a clustering model as published in R. Tibshirani and G. Walther 2005.
ps.cluster(cl.tr, cl.ts, na.rm = FALSE)
cl.tr |
Clusters membership as defined by the original clustering model, i.e. the one that was not fitted on the dataset of interest. |
cl.ts |
Clusters membership as defined by the clustering model fitted on the dataset of interest. |
na.rm |
TRUE if missing values should be removed, FALSE otherwise. |
A list with items:
ps: the overall prediction strength (minimum of the prediction strengths at cluster level).
ps.cluster: Prediction strength for each cluster
ps.individual: Prediction strength for each sample.
R. Tibshirani and G. Walther (2005) "Cluster Validation by Prediction Strength", Journal of Computational and Graphical Statistics, 14(3):511-528.
# load SSP signature published in Sorlie et al. 2003 data(ssp2003) # load NKI data data(nkis) # SP2003 fitted on NKI ssp2003.2nkis <- intrinsic.cluster(data=data.nkis, annot=annot.nkis, do.mapping=TRUE, std="robust", intrinsicg=ssp2003$centroids.map[ ,c("probe", "EntrezGene.ID")], number.cluster=5, mins=5, method.cor="spearman", method.centroids="mean", verbose=TRUE) # SP2003 published in Sorlie et al 2003 and applied in VDX ssp2003.nkis <- intrinsic.cluster.predict(sbt.model=ssp2003, data=data.nkis, annot=annot.nkis, do.mapping=TRUE, verbose=TRUE) # prediction strength of sp2003 clustering model ps.cluster(cl.tr=ssp2003.2nkis$subtype, cl.ts=ssp2003.nkis$subtype, na.rm = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.